Rappel du cours (rotation du plan)

Theoreme1 Guesmi.B

 $R_1(O_1;\Theta_1)$; $R_2(O_2;\Theta_2)$ sont deux rotations de centres O_1 et O_2 distincts et d'angles Θ_1 et Θ_2 Non nuls alors

- 1) Si $\Theta_1+\Theta_2=2k\pi$; keZ alors $R_2\circ R_1$ est une translation
- 2) si $\Theta_1 + \Theta_2 \neq 2k\pi$ alors $R_2 \circ R_1$ est une rotation d'angle $\Theta_1 + \Theta_2$

REMARQUE

Pour déterminer le vecteur de la translation dans le premier cas du théorème Il suffit de connaître l'image d'un point par $R_2 \circ R_1$ si on choisit O_1 centre de R_1 son image O'_1 par $R_2 \circ R_1$ est $R_2 \circ R_1$ est la translation de vecteur $\overline{O_1 O'_1}$

EXERCICE1(seulement 4èMaths)

A l'extérieur d'un quadrilatère convexe ABCD direct on construit les triangles équilatéraux AI_1B ; BI_2C ; CI_3D et DI_4A

 $R_{1;}R_{2};R_{3}$ et R_{4} les rotations de centres $I_{1};I_{2};I_{3}$ et I_{4} et d'angle $(-\pi/3)$

- 1) Montrer que $R_4 \circ R_3 \circ R_2 \circ R_1$ est la rotation de centre A et d'angle (-4 π /3)
- 2)a)montrer que R₂oR₁ est une rotation ; soit P son centre
 - b) montrer de même que R₄oR₃ est une rotation soit Q son centre
- 3) en déduire que le triangle APQ est équilatéral

EXERCICE2(4è maths)

ABC est un triangle H son orthocentre et O le centre de son cercle circonscrit(Ω) A' le milieu de [BC]

- 1)a)soit P le point défini par $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$ montrer que P=H b) en déduire que $\overrightarrow{AH} = -2\overrightarrow{OA}'$
- 2) montrer que $t_{\overrightarrow{AH}} = S_{(BC)} o S_d$ avec d est une droite que vous déterminer
- 3) montrer que montrer que le point K tel $S_{(BC)}(H)=K$ appartient à (Ω)

Correction de l'exercice1

1)Il résulte du théorème vu précédemment que R₄oR₃oR₂oR₁ est une rotation d'angle

 $4x(-\pi/3)$

Puisque $R_1(A)=B$; $R_2(B)=C$; $R_3(C)=D$ et $R_4(D)=A$ donc A est invariant

Soit f=R₄oR₃oR₂oR₁

Donc A est le centre de cette rotation

2)a)et b) même procède comme 1)

Soit R=R₂oR₁ puisque R₁ et R₂ sont de centres I₁ et I₁ la droite commune aux deux

Rotations est. (I_1I_2) donc soit $R=S_{d1}oS_{(I1I2)}oS_{(I1I2)}oS_{d1}$; $d_1=(I_1P)$; $d_2=(I_2P)$

Et tel que $(\overrightarrow{I_1I_2}; \overrightarrow{I_1P}) \equiv \pi/6[2\pi]$ et $(\overrightarrow{I_2I_1}, \overrightarrow{I_2p}) \equiv -\pi/6[2\pi]$

De la même manière on détermine Q avec R'=R₄oR₃

3)on a f=R'oR est la rotation de centre A et d'angle ($-4\pi/3$)

On a alors $f=S_{(QA)}oS_{(QP)}oS_{(PQ)}oS_{(PA)}$

Avec $(\overrightarrow{PA}; \overrightarrow{PQ})\mathcal{E} - \pi/3[2\pi]$ et $(\overrightarrow{QP}; \overrightarrow{QA}) \equiv -\pi/3[2\pi]$ donc le triangle APQ est équilatéral

Correction exercice2

1)a) on a A' milieu de [BC] donc $\overrightarrow{OB} + \overrightarrow{OC} = 2\overrightarrow{OA}'$

D'où $\overrightarrow{AP} = \overrightarrow{AO} + \overrightarrow{OP}$ mais $\overrightarrow{OP} = \overrightarrow{OA} + 2\overrightarrow{OA}$ donc $\overrightarrow{AP} = 2\overrightarrow{OA}$

(AP)//(OA') ; (OA') est la médiatrice de [BC]donc (AH) est une droite portant la hauteur issue de A

Du triangle ABC même raisonnement pour (BP) et (CP) donc P est l'orthocentre du triangle ABC

Alors P=H

b) on a :
$$\overrightarrow{AP} = 2\overrightarrow{OA}'$$
 or $P = H$ donc $\overrightarrow{AH} = 2\overrightarrow{OA}'$

on sait que toute translation peut être décomposée de plusieurs façon en produit de deux symétries orthogonales d'axes parallèles

soit alors
$$d=t_{\frac{-1}{2}\overrightarrow{AH}}(BC)$$
 vu que $\overrightarrow{AH}=2\overrightarrow{OA}'$ doc d passe par O

on
$$S_d(\Omega) = \Omega$$
 et $S_{(BC)}(\Omega) = \Omega'$

soit $t=S_{(BC)}oS_d$ donc $t(\Omega)=\Omega'$ comme $A\varepsilon(\Omega)$ et que H=t(A) donc $H\varepsilon\Omega'$ donc

$$S_{(BC)}(H) \in S_{(BC)}(\Omega')$$
 alors $K \in \Omega$

EXERCICE3

Soit D une droite fixe et A un point fixe tel que A n'est pas sur D; M un point variable de D

On construit le cercle (C) de » centre A et passant par M et le cercle (C') de centre M et

Passant par A on désigne par N et P les points d'intersections de (C) et (C')

(on prend N et P tel que le triangle AMN est direct)

1)montrer que AMN er AMP sont équilatéraux

2)montrer que
$$R_{(A}\frac{\pi}{3})(M)=N$$
 et $R_{(A;\frac{-\pi}{3})}(M)=P$

3) déterminer alors l'ensemble décrit par N et P lorsque M décrit la droite D

CORRECTION

On a AM=AN et MN=MA donc AM=AN=MN donc le triangle AMN est équilatéral
De la même manière on montre que AMP est équilatéral

2)montrons que
$$R_{\left(A;\frac{\pi}{3}\right)}(M)=N$$
 on a $\left\{(\overrightarrow{AM};\overrightarrow{AN}) \equiv \frac{\pi}{3}(2\pi) \iff R_{\left(A;\frac{\pi}{3}\right)}(M)=N\right\}$

De même on montre que $R_{\left(A; \frac{-\pi}{3}\right)}(M) = P$

3) posons
$$r_1 = R_{(A; \frac{\pi}{3})}$$
 et $r_2 = R_{(A; \frac{-\pi}{3})}$ on a alors

Alors $M\varepsilon(C)$ soit $C_1=r_1(C)$ et $C_2=r_2(C)$

Donc soit $A_1=r_1(A)$ donc N décrit le cercle $C_1(A_1;R)$; R le rayon de (C)

De même P décrit le cercle $C_2(A_2;R)$ avec $A_2=r_2(A)=A$ d'où $C_2=C$

EXERCICE4

Soit (C) un cercle de centre O et A un point fixe non situé sur C;

M un point variable de (C) on construit le point N tel que le triangle AMN soit

Isocèle de sommet principal A et tel que $(\overrightarrow{AM}; \overrightarrow{AN}) \equiv \frac{\pi}{2}(2\pi)$

- 1)a)montrer que N est l'image de M par une rotation que l'on precisera
 - b)En déduire l'ensemble des points N lorsque M decrit (C)
- 2) soit I le milieu de [MN] et M'= $R_{\left(A;\frac{\pi}{4}\right)}(M)$
- a) construire M' soigneusement
- b)montrer que $\overrightarrow{AI} = \frac{\sqrt{2}}{2} \overrightarrow{AM'}$
- c) en déduire l'ensemble des points I lorsque M décrit (C)

CORRECTION

1)a) puisque
$$\left\{ \overbrace{(\overrightarrow{AM}; \overrightarrow{AN})}^{AM} \equiv \frac{\pi}{2} (2\pi) \stackrel{\Leftrightarrow}{\Leftrightarrow} R_{\left(A; \frac{\pi}{2}\right)}(M) = N \text{ soit } r_1 = R_{\left(A; \frac{\pi}{2}\right)} \right\}$$

b) puisque $M\varepsilon(C)$ alors $r_1(M)\varepsilon r_1(C) = C'$ cercle

soit $o_1=r_1(0)$; $C_1(O_1,R)$; R rayon du cercle C

2)a)on I milieu de [MN] soit
$$r'=R_{(A;\frac{\pi}{4})}$$
 on $aM'=r'(M) \Leftrightarrow \begin{cases} \overrightarrow{AM} = AM' \\ (\overrightarrow{AM}, \overrightarrow{AM'}) \equiv \frac{\pi}{4}(2\pi) \end{cases}$

b)I milieu de [MN] donc AMN est rectangle isocèle enA

$$(\overrightarrow{AM}; \overrightarrow{AI}) \equiv \frac{\pi}{4} (2\pi) or (\overrightarrow{AM}; \overrightarrow{AM}') \equiv \frac{\pi}{4} (2\pi) donc \overrightarrow{AM}et \overrightarrow{AI} sont colinéaires$$

Et de même sens

mais AI<AM et AI=IM=IN donc le triangle IAM est

Rectangle isocèle en I donc en utilisant le théorème de Pythagore

On aura MA²=2 IA² mais AM=AM' donc $\overrightarrow{AI} = \frac{\sqrt{2}}{2} \overrightarrow{AM'}$

A étant fixe donc I est l'image de M' par l'homothétie de centre A et de rapport $\frac{\sqrt{2}}{2}$

Puisque M'=r'(M) or M ϵ (C) donc M' ϵ r'(C)

Qui est un cercle C_1 même rayon R et de centre $O_1=r'(0)$

Soit $C_1(O_1;R)$ on a M' ϵC_1 et soit $h=h_{(A;\frac{\sqrt{2}}{2})}$ on

I=h(M') donc $I\epsilon h(C_1)=C_2$ qui est un cercle de centre $O_2=h(O_1)$ et de rayon

 $R_2 = \frac{\sqrt{2}}{2} R$ alors I décrit le cercle C_2