.....

Exercice1

on considerela somme $S_n = 1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2$; $\forall n \in IN^*$

- 1) montrer $2n^2 + 3n + 1 = (n+1)(2n+1); \forall n \in IN$
- 2)demontrer par recurrenceque $\forall n \in IN^* \text{ on } a : S_n = \frac{n(n+1)(2n+1)}{6}$

Exercice2

 $(o; \vec{i}; \vec{j}; \vec{k})$ un repere de l'espace

on considereles droites d'equations D: $\begin{cases} x = -1 - 2\alpha \\ y = 2 - \alpha \\ z = -2 + 3\alpha \end{cases} \qquad \alpha \in IR \qquad D': \begin{cases} x = 1 + \beta \\ y = 5 - \beta \\ z = 1 - 3\beta \end{cases} \qquad \beta \in IR$

- 1) Déterminer $D \cap D'$
- 2)Determiner une equation cartesienne du plan passant par A(0;-1;2)et parallele à D et à D'
- 3) A tout reel m; on associele plan P_m dont une équation cartesienne est

$$P_m: (-m+1)x + 2(m+2)y - (m+1)z + 1 = 0$$

- a) montrerque $\forall m \in IR$ les points $I(-1;\frac{1}{2};2)$ et $J(\frac{1}{2};-1;-\frac{5}{2})$ apartiennent à P_m
- b) En deduire l'intersection des plans P_m
- 4) determiner $P_2 \cap P$ (P_2 est le plan P_m pour m = 2).
- 5) determiner m pour que la droite D soit parallele au plan P_m

Exercice3

On considereun triangle ABC isocele de sommet principale A inscrit dans un cerclede centreO et de rayon 1

[AH] est la hauteur issue de A on note $\hat{HOC} = \alpha(\text{en radian}); \alpha \in]0; \frac{\pi}{2}[$

- 1)a) calculer BC puis AH en fonction de α
- b) En deduire l'aire du triangle ABC
- 2) on considerela function $f(\alpha) = \sin \alpha (1 + \cos \alpha)$; $\forall \alpha \in \left[0; \frac{\pi}{2}\right]$
- a) montrerque $\forall x \in IR$; $2x^2 + x 1 = (2x 1)(x + 1)$
- b) montrerque f'(α) = $(2\cos\alpha 1)(\cos\alpha + 1)$
- c) Dresserle tableau de variation de f sur $\left[0; \frac{\pi}{2}\right]$
- 3) Determiner la valeur de α pour laquelle l'aire du triangle est maximale
- 4) Preciserce maximum puis la nature du triangle en ce maximum

bareme Exercice1 (3pts) Exercice2 (10pts) Exercice3(7pts)