
DEVOIR N°2

première partie: On considère une fonction f définie sur [-2;3], supposée deux fois dérivable (f'' existe donc). Voici la courbe représentative de f'

répondre aux questions suivantes :

- V
 \square F \square f est décroissante sur
 [-2;-1]
- $\bullet \ \ \mathbf{V} \square \ \mathbf{F} \square \ f$ est obligatoirement négative sur [-2;-1]
- V \square F \square f est paire
- $\bullet \ \ \mathbf{V} \square \ \mathbf{F} \square \ \ \text{on suppose que } f(-1) = 0$. Alors f(1) > 0
- $V \square F \square f''$ est positive sur [-2;1]
- $V \square F \square f''$ est croissante sur [-2; 1]

deuxieme partie

- V
 \square F
 \square si pour tout x non nul,
on a: $\frac{f(x)}{x}>1$ alors $\lim_{x\to +\infty}f(x)=+\infty$
- V \square F \square si pour tout x on a: f(x) > 0 et $\lim_{x \to +\infty} g(x) = +\infty$ alors $\lim_{x \to +\infty} f(x) * g(x) = +\infty$
- $V \square F \square$ l'équation : $4x^3 6x^2 + 1 = 0$ admet une seule solution dans [0; 2]
- $V \square F \square$ une fonction impaire ne peut s'annuler qu'un nombre impair de fois
- V \square F \square la fonction définie par $f(x) = x\sqrt{x}$ est dérivable en 0
- V
 \square F \square soit fune fonction définie sur $\mathbb R$
telle que f' est croissante. Alors $\lim_{x\to +\infty}f(x)=+\infty$
- $V \square F \square$ soit f une fonction telle que f'(1) = 0. Alors f possède un extrémum (minimum ou maximum) localement en 1(c'est à dire au voisinage de 1)

troisième partie: (les nombres évoqués dans la suite sont supposés être des nombres entiers supérieurs à 1...)

- V F I la somme de deux diviseurs d'un même nombre divise ce nombre
- \bullet V \square F \square tout nombre s'écrit de manière unique comme somme de puissances positives de 2
- V□ F□ si le reste est 75 dans la division euclidienne d'un entier par 132, alors le reste est 3 dans la division par 12
- \bullet V \Box F \Box le ppcm de deux nombres pairs ne peut être égal au produit de ces deux nombres
- V
 \square F
 \square le ppcm de deux nombres est divisible par le carré de leur
 $p\gcd$
- \bullet V \Box F \Box deux entiers consécutifs (strictement positifs) sont toujours premiers entre eux
- V□ F□ il peut y avoir trois vendredi 13 dans une même année