Exercice n°1

Le quadruplet (D,A,C,H) détermine un repère orthonormé de l'espace car les <u>vecteurs</u> \overrightarrow{DA} , \overrightarrow{DC} et \overrightarrow{DH} ne sont pas <u>coplanaires</u> et sont même orthogonaux deux à deux

Le quadruplet (D,A,B,H) détermine un repère de l'espace car les vecteurs \overrightarrow{DA} , \overrightarrow{DB} et \overrightarrow{DH} ne sont pas coplanaires.

En revanche ce repère n'est pas orthonormé car les vecteurs \overrightarrow{DA} et \overrightarrow{DB} ne sont pas orthogonaux

Le quadruplet (D,B,F,H) ne détermine pas un repère de l'espace car le

vecteur \overrightarrow{DF} s'exprime à l'aide de \overrightarrow{DB} et \overrightarrow{DH} (en effet $\overrightarrow{DF} = \frac{1}{2}$ ($\overrightarrow{DB} + \overrightarrow{DH}$))

Le quadruplet (D,C,H,E) détermine un repère de l'espace car les <u>vecteurs</u> \overrightarrow{DC} , \overrightarrow{DH} et \overrightarrow{DE} ne sont pas <u>coplanaires</u>.

En revanche ce repère n'est pas orthonormé car les vecteurs \overrightarrow{DH} et \overrightarrow{DE} ne sont pas orthogonaux

Le quadruplet (A,B,C,G) détermine un repère de l'espace car les <u>vecteurs</u> \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AG} ne sont pas <u>coplanaires</u>.

En revanche ce repère n'est pas orthonormé car les <u>vecteurs</u> \overrightarrow{AB} et \overrightarrow{AC} ne sont pas orthogonaux

Le quadruplet (A,B,C,F) détermine un repère de l'espace car les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AF} ne sont pas coplanaires.

En revanche ce repère n'est pas orthonormé car les <u>vecteurs</u> \overrightarrow{AB} et \overrightarrow{AC} ne sont pas orthogonaux

Le quadruplet (A,B,C,H) détermine un repère de l'espace car les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AH} ne sont pas coplanaires.

En revanche ce repère n'est pas orthonormé car les <u>vecteurs</u> \overrightarrow{AB} et \overrightarrow{AC} ne sont pas orthogonaux

Le quadruplet (A,B,C,E) détermine un repère de l'espace car les <u>vecteurs</u> \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AB} ne sont pas <u>coplanaires</u>.

En revanche ce repère n'est pas orthonormé car les <u>vecteurs</u> \overrightarrow{AB} et \overrightarrow{AC} ne sont pas orthogonaux

Exercice n°2

1) Le point O étant l'origine du repère, on aura O(0;0;0)

Puisque
$$\overrightarrow{OA} = 1 \times \overrightarrow{OA} + 0 \times \overrightarrow{OC} + 0 \times \overrightarrow{OD}$$
, on aura A(1;0;0).

Puisque
$$\overrightarrow{OB} = 1 \times \overrightarrow{OA} + 1 \times \overrightarrow{OC} + 0 \times \overrightarrow{OD}$$
, on aura B(1;1;0)

Puisque
$$\overrightarrow{OC} = 0 \times \overrightarrow{OA} + 1 \times \overrightarrow{OC} + 0 \times \overrightarrow{OD}$$
, on aura C(0;1;0).

Puisque
$$\overrightarrow{OD} = 0 \times \overrightarrow{OA} + 0 \times \overrightarrow{OC} + 1 \times \overrightarrow{OD}$$
, on aura D(0;0;1)

Puisque
$$\overrightarrow{OE} = 1 \times \overrightarrow{OA} + 0 \times \overrightarrow{OC} + 1 \times \overrightarrow{OD}$$
, on aura E(1;0;1).

Puisque
$$\overrightarrow{OF} = 1 \times \overrightarrow{OA} + 1 \times \overrightarrow{OC} + 1 \times \overrightarrow{OD}$$
, on aura F(1;1;1)

Puisque
$$\overrightarrow{OG} = 0 \times \overrightarrow{OA} + 1 \times \overrightarrow{OC} + 1 \times \overrightarrow{OD}$$
, on aura G(0;1;1)

- 2) Le milieu de [AE]aura pour coordonnées $\left(\frac{x_A + x_{\overline{E}}}{2} = 1; \frac{y_A + y_{\overline{E}}}{2} = 0; \frac{z_A + z_{\overline{E}}}{2} = \frac{1}{2}\right)$
- 3) Le centre I du <u>carré</u> DEFG est le milieu de chacune de ses diagonales, donc a pour coordonnées $\left(\frac{x_D + x_F}{2} = \frac{1}{2}; \frac{y_D + y_F}{2} = \frac{1}{2}; \frac{z_D + z_F}{2} = 1\right)$
- 4) Le point de coordonnées $(0;0;\frac{1}{2})$ est le milieu de [OD].

Le point de coordonnées ($\frac{1}{2}$; $\frac{1}{2}$;0) est le milieu de [OB].

Le point de coordonnées $(\frac{1}{2}; \frac{1}{2}; \frac{1}{2})$ est le milieu de [OF].

Exercice n°3

1) Dans le repère $(D, \overrightarrow{DA}, \overrightarrow{DC}, \overrightarrow{DH})$:

Le point D étant l'origine du repère, on aura D(0;0;0)

Puisque
$$\overrightarrow{DA} = 1 \times \overrightarrow{DA} + 0 \times \overrightarrow{DC} + 0 \times \overrightarrow{DH}$$
, on aura A(1;0;0).

Puisque
$$\overrightarrow{DB} = 1 \times \overrightarrow{DA} + 1 \times \overrightarrow{DC} + 0 \times \overrightarrow{DH}$$
, on aura B(1;1;0)

Puisque
$$\overrightarrow{DC} = 0x \overrightarrow{DA} + 1x \overrightarrow{DC} + 0x \overrightarrow{DH}$$
, on aura C(0;1;0).

Puisque
$$\overrightarrow{DE} = 1 \times \overrightarrow{DA} + 0 \times \overrightarrow{DC} + 1 \times \overrightarrow{DH}$$
, on aura E(1;0;1)

Puisque
$$\overrightarrow{DF} = 1x \overrightarrow{DA} + 1x \overrightarrow{DC} + 0x \overrightarrow{DH}$$
, on aura F(1;1;1).

Puisque
$$\overrightarrow{DG} = 0x \overrightarrow{DA} + 1x \overrightarrow{DC} + 1x \overrightarrow{DH}$$
, on aura G(0;1;1)

Puisque
$$\overrightarrow{DH} = 0x \overrightarrow{DA} + 0x \overrightarrow{DC} + 1x \overrightarrow{DH}$$
, on aura H(0;0;1)

Dans le repère
$$(D, \overrightarrow{DA}, \overrightarrow{DC}, \overrightarrow{DI})$$
:

Le point D étant l'origine du repère, on aura D(0;0;0)

Puisque
$$\overrightarrow{DA} = 1 \times \overrightarrow{DA} + 0 \times \overrightarrow{DC} + 0 \times \overrightarrow{DI}$$
, on aura A(1;0;0).

Puisque
$$\overrightarrow{DB} = 1 \times \overrightarrow{DA} + 1 \times \overrightarrow{DC} + 0 \times \overrightarrow{DI}$$
, on aura B(1;1;0)

Puisque
$$\overrightarrow{DC} = 0 \times \overrightarrow{DA} + 1 \times \overrightarrow{DC} + 0 \times \overrightarrow{DI}$$
, on aura C(0;1;0).

Puisque
$$\overrightarrow{DE} = 1 \times \overrightarrow{DA} + 0 \times \overrightarrow{DC} + 2 \times \overrightarrow{DI}$$
, on aura E(1;0;2)

Puisque
$$\overrightarrow{DF} = 1 \times \overrightarrow{DA} + 1 \times \overrightarrow{DC} + 2 \times \overrightarrow{DI}$$
, on aura F(1;1;2).

Puisque
$$\overrightarrow{DG} = 0x \overrightarrow{DA} + 1x \overrightarrow{DC} + 2x \overrightarrow{DI}$$
, on aura G(0;1;2)

Puisque
$$\overrightarrow{DH} = 0x \overrightarrow{DA} + 0x \overrightarrow{DC} + 2x \overrightarrow{DI}$$
, on aura H(0;0;2)

Exercice n°4

1) a) Puisque A est le point de coordonnées (1 ;1 ;0), cela signifie que $\overrightarrow{OA} = 1 \times \overrightarrow{OI} + 1 \times \overrightarrow{OJ} + 0 \times \overrightarrow{OK} = \overrightarrow{OI} + \overrightarrow{OJ}$

Le quadrilatère OIAJ est donc un parallélogramme.

b) Dans le repère orthonormé
$$(O; \overrightarrow{OI}; \overrightarrow{OJ}; \overrightarrow{OK})$$
, or $a^{OA} = \sqrt{(x_A - x_O)^2 + (y_A - y_O)^2 + (z_A - z_O)^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$

2) a) Puisque B est le point de coordonnées (0 ;1 ;1), cela signifie que $\overrightarrow{OB} = 0 \times \overrightarrow{OI} + 1 \times \overrightarrow{OJ} + 1 \times \overrightarrow{OK} = \overrightarrow{OJ} + \overrightarrow{OK}$

Le quadrilatère OJBK est donc un parallélogramme.

b) Dans le repère orthonormé
$$(O; \overrightarrow{OI}; \overrightarrow{OJ}; \overrightarrow{OX})$$
, on $a^{OB} = \sqrt{(x_B - x_O)^2 + (y_B - y_O)^2 + (z_B - z_O)^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$

Exercice n°5

$$\overrightarrow{AB} \begin{vmatrix} x_B - x_A = 1 \\ y_B - y_A = -8 \\ z_B - z_A = 3 \end{vmatrix}$$
2) Si I est le milieu de [AB], alors
$$\begin{cases}
x_I = \frac{x_A + x_B}{2} = \frac{7}{2} \\
y_I = \frac{y_A + y_B}{2} = 1 \\
z_I = \frac{z_A + z_B}{2} = -\frac{1}{2}
\end{cases}$$

Exercice n°6

$$AB = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2} = \sqrt{(-4)^2 + (-3)^2 + 6^2} = \sqrt{61}$$

Exercice n°7

- 1) Les <u>vecteurs</u> $\vec{u} \begin{pmatrix} 3 \\ 6 \\ 12 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}$ sont <u>colinéaires</u> car $\vec{v} = \frac{2}{3} \vec{u}$
- 2) Le <u>vecteur</u> $\vec{u} + \vec{v}$ a pour coordonnées $\vec{u} + \vec{v} \begin{pmatrix} 5 \\ 10 \\ 20 \end{pmatrix}$

3) Le vecteur
$$2^{\vec{u}}$$
 a pour coordonnées $2^{\vec{u}} \binom{6}{12}$. Le vecteur $5^{\vec{v}}$ a pour coordonnées $5^{\vec{v}} \binom{10}{20}$.

En soustrayant les coordonnées des deux <u>vecteurs</u> $2\vec{u}$ et $5\vec{v}$, le <u>vecteur</u> $2\vec{u}$ -5 \vec{v} aura donc pour coordonnées $2\vec{u}$ -5 \vec{v} $\begin{pmatrix} -4\\ -8\\ -16 \end{pmatrix}$

Exercice n°8

Si $\overrightarrow{OC} = 5\vec{i} + 4\vec{j} - \vec{k}$ alors les coordonnées de C sont C(5;4;-1)

Le vecteur
$$\overrightarrow{AB}$$
 a donc pour coordonnées $\begin{vmatrix} x_B - x_A = -1 \\ y_B - y_A = 0 \\ z_B - z_A = -12 \end{vmatrix}$ donc $2\overrightarrow{AB}$ a

pour coordonnées

Le vecteur
$$\overrightarrow{AC}$$
 a donc pour coordonnées
$$\begin{vmatrix} x_C - x_A = 7 \\ y_C - y_A = 3 \\ z_C - z_A = -11 \end{vmatrix}$$
 donc $4 \overrightarrow{AC}$ a
$$\begin{vmatrix} 28 \\ 12 \end{vmatrix}$$

En additionnant les coordonnées des deux précédents <u>vecteurs</u>, le <u>vecteur</u> $\vec{u} = 4$ $\overrightarrow{AC} + 2$ \overrightarrow{AB} aura donc pour coordonnées

$$\vec{u} = 4\vec{AC} + 2\vec{AB}$$

$$-2 + 28 = 26$$

$$0 + 12 = 12$$

$$-24 + (-44) = -68$$

Exercice n°9

pour coordonnées

Dans le repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$, les coordonnées de A sont A(10;0;0), celles de B(0;10;0) et celles de C(0;0;10).

Ainsi $\overrightarrow{OA}(10:0:0)$, $\overrightarrow{OB}(0:10:0)$ et $\overrightarrow{OC}(0:0:10)$

Puisque $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{OB}$, les coordonnées de \overrightarrow{OD} donc celles de D, sont \overrightarrow{OD} (10:10:0). Ainsi D(10:10:0)

Le vecteur $\overrightarrow{OE} = \frac{3}{2} \overrightarrow{OA} + \frac{2}{5} \overrightarrow{OB} - \frac{3}{10} \overrightarrow{OC}$ a donc pour coordonnées, donc le point E a pour coordonnées E(15, 4, -3)

Puisque $\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{OC}$, les coordonnées de \overrightarrow{OF} donc celles de F, sont \overrightarrow{OF} (10;0;10). Ainsi F(10;0;10)

Puisque $\overrightarrow{OG} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$, les coordonnées de \overrightarrow{OG} donc celles de G, sont $\overrightarrow{OG}\begin{pmatrix} 10\\10\\10 \end{pmatrix}$. Ainsi G(10;10;10)

Puisque $\overrightarrow{OH} = \overrightarrow{OB} + \overrightarrow{OC}$, les coordonnées de \overrightarrow{OH} donc celles de H, sont \overrightarrow{OH} $\begin{pmatrix} 0\\10\\10 \end{pmatrix}$. Ainsi H(0;10;10)

Puisque $\overrightarrow{OK} = \frac{6}{5} \overrightarrow{OG} + \frac{1}{5} \overrightarrow{OE}$, les coordonnées de \overrightarrow{OK} donc celles de K, sont

$$\overrightarrow{OK}\left(\frac{6}{5} \times 10 + \frac{1}{5} \times 15 = 15, \frac{6}{5} \times 10 + \frac{1}{5} \times 4 = \frac{64}{5}; \frac{6}{5} \times 10 + \frac{1}{5} \times \left(-3\right) = \frac{57}{5}\right).$$

Ainsi
$$K\left(15, \frac{64}{5}, \frac{57}{5}\right)$$

Notons L(x;y;z).

D'une part les coordonnées de
$$\overrightarrow{AL}$$
 sont
$$\begin{vmatrix} x - x_A = x - 10 \\ y - y_A = y \\ z - z_A = z \end{vmatrix}$$

D'autre part, les coordonnées de $\frac{2}{5}\overrightarrow{DB} - \frac{1}{2}\overrightarrow{OF}$ sont :

$$\frac{2}{5}\overrightarrow{DB} - \frac{1}{2}\overrightarrow{OF} \begin{vmatrix} \frac{2}{5} \times (x_B - x_D) - \frac{1}{2} \times (x_F - x_O) = \frac{2}{5} \times (-10) - \frac{1}{2} \times 10 = -9 \\ \frac{2}{5} \times (y_B - y_D) - \frac{1}{2} \times (y_F - y_O) = \frac{2}{5} \times 0 - \frac{1}{2} \times 0 = 0 \\ \frac{2}{5} \times (z_B - z_D) - \frac{1}{2} \times (z_F - z_O) = \frac{2}{5} \times 0 - \frac{1}{2} \times 10 = -5 \end{vmatrix}$$

De l'égalité
$$\overrightarrow{AL} = \frac{2}{5} \overrightarrow{DB} - \frac{1}{2} \overrightarrow{OF}$$
, on déduit
$$\begin{cases} x - 10 = -9 \\ y = 0 \\ z = -5 \end{cases}$$
.

Le point L a donc pour coordonnées L(1;0;-5)

Exercice n°10

 $\underline{1^{\text{ère}} \text{ méthode}}$ Le point G <u>centre de gravité</u> du triangle ABC est le <u>barycentre</u> du système $\{(A,1);(B,1);(C,1)\}$.

$$Ainsi \begin{cases} x_{G} = \frac{1 \times x_{A} + 1 \times x_{B} + 1 \times x_{C}}{1 + 1 + 1} = \frac{3}{3} = 1 \\ y_{G} = \frac{1 \times y_{A} + 1 \times y_{B} + 1 \times y_{C}}{1 + 1 + 1} = \frac{5}{3} \\ z_{G} = \frac{1 \times z_{A} + 1 \times z_{B} + 1 \times z_{C}}{1 + 1 + 1} = \frac{4}{3} \end{cases}$$

 $\underline{2^{\text{ème}} \text{ méthode}}$: Le point G vérifie l'égalité vectorielle $\overrightarrow{AG} = \frac{2}{3} \overrightarrow{AI}$ où I est le milieu de [BC]

Le point I a pour coordonnées $\left(\frac{x_B + x_C}{2} = 0; \frac{y_B + y_C}{2} = \frac{5}{2}; \frac{z_B + z_C}{2} = 2\right)$

Le vecteur $\frac{2}{3}$ \overrightarrow{AI} a donc pour $\frac{\left(\frac{2}{3}(x_I - x_A) = -2; \frac{2}{3}(y_I - y_A) = \frac{5}{3}; \frac{2}{3}(z_I - z_A) = \frac{4}{3}\right)$

Notons
$$G(x;y;z)$$
. D'une part les coordonnées de \overrightarrow{AG} sont
$$\begin{vmatrix} x - x_A = x - 3 \\ y - y_A = y \\ z - z_A = z \end{vmatrix}$$
.

L'égalité
$$\overrightarrow{AG} = \frac{2}{3} \overrightarrow{AI}$$
 implique
$$z = \frac{4}{3}$$
. On

L'égalité $\overrightarrow{AG} = \frac{2}{3} \overrightarrow{AI}$ implique $z = \frac{4}{3}$. On retrouve bien les coordonnées de $z = \frac{2}{3} \overrightarrow{AI}$ implique $z = \frac{4}{3}$

Exercice n°11

 $\overrightarrow{AB} \begin{vmatrix} x_B - x_A = 2 \\ y_B - y_A = -2 \\ z_B - z_A = 2 \end{vmatrix}$

1) On calcule les coordonnées des <u>vecteurs</u> $\begin{vmatrix} z_B - z_A = z_A \\ \hline AC \end{vmatrix}$ $\begin{vmatrix} x_C - x_A = 2 \\ y_C - y_A = 1 \\ z_C - z_A = -10 \end{vmatrix}$.

Les <u>vecteurs</u> \overrightarrow{AB} et \overrightarrow{AC} ne sont pas <u>colinéaires</u> car il n'existe pas $\begin{cases} 2k = 2 \\ -2k = 1 \end{cases}$

de <u>réel</u> k unique satisfaisant aux trois conditions 2k = -10.

Les points A,B et C ne sont donc pas alignés.

2) a) Notons D(x;y;z).

Alors $\begin{vmatrix} x_D - x_A = x - 2 \\ y_D - y_A = y - 1 \\ z_D - z_A = z - 3 \end{vmatrix} = 3x - 6$ $3AD \begin{vmatrix} 3(x_D - x_A) = 3x - 6 \\ 3(y_D - y_A) = 3y - 3 \\ 3(z_D - z_A) = 3z - 9 \end{vmatrix}$

$$2\overrightarrow{AB} \begin{vmatrix} 2(x_B - x_A) = 4 \\ 2(y_B - y_A) = -4 \\ 2(z_B - z_A) = 4 \end{vmatrix} \overrightarrow{BC} \begin{vmatrix} x_C - x_B = 0 \\ y_C - y_B = 3 \\ z_C - z_B = -12 \end{vmatrix}, \text{ l'égalité } 2\overrightarrow{AB} + 3\overrightarrow{AD} = \overrightarrow{BC}$$

$$\begin{cases} 4 + 3x - 6 = 0 \\ -4 + 3y - 3 = 3 \\ 4 + 3z - 9 = -12 \end{cases} \Leftrightarrow \begin{cases} x = \frac{2}{3} \\ y = \frac{10}{3} \\ z = -\frac{7}{3} \end{cases}$$

entraîne

Ainsi $\overline{ \mathcal{D}\left(\frac{2}{3};\frac{10}{3};-\frac{7}{3}\right) }.$

b) Les coordonnées du milieu E de [BC] sont
$$\left(x_{\mathcal{F}} = \frac{x_{\mathcal{F}} + x_{\mathcal{C}}}{2} = 4; y_{\mathcal{F}} = \frac{y_{\mathcal{F}} + y_{\mathcal{C}}}{2} = \frac{1}{2}; z_{\mathcal{F}} = \frac{z_{\mathcal{F}} + z_{\mathcal{C}}}{2} = -1\right)$$

c) $\underline{1}^{\text{ère}}$ méthode: Le point F centre de gravité du triangle ABC est le barycentre du système $\{(A,1);(B,1);(C,1)\}$.

$$Ainsi \begin{cases} x_F = \frac{1 \times x_A + 1 \times x_B + 1 \times x_C}{1 + 1 + 1} = \frac{10}{3} \\ y_F = \frac{1 \times y_A + 1 \times y_B + 1 \times y_C}{1 + 1 + 1} = \frac{2}{3} \\ z_F = \frac{1 \times z_A + 1 \times z_B + 1 \times z_C}{1 + 1 + 1} = \frac{1}{3} \end{cases}$$

 $\underline{2^{\text{ème}}}$ méthode: On aurait pu utiliser l'égalité vectorielle $\overrightarrow{AF} = \frac{2}{3}$ \overrightarrow{AE} vérifiée par le point F.

d) Notons G(x;y;z).

Alors
$$\overrightarrow{GA} \begin{vmatrix} x_A - x_G = 2 - x \\ y_A - y_G = 1 - y \\ z_A - z_G = 3 - z \end{vmatrix} 3 \overrightarrow{GA} \begin{vmatrix} 3(x_A - x_G) = 6 - 3x \\ 3(y_A - y_G) = 3 - 3y \\ 3(z_A - z_G) = 9 - 3z \end{vmatrix}.$$

$$\overrightarrow{GB} \begin{vmatrix} x_B - x_G = 4 - x \\ y_B - y_G = -1 - y \\ z_B - z_G = 5 - z \end{vmatrix} 2(x_B - x_G) = 8 - 2x$$
De plus
$$2\overrightarrow{GB} \begin{vmatrix} 2(x_B - x_G) = 8 - 2x \\ 2(y_B - y_G) = -2 - 2y \\ 2(z_B - z_G) = 10 - 2z \end{vmatrix}$$

$$\overrightarrow{CG} \begin{vmatrix} x_G - x_C = x - 4 \\ y_G - y_C = y - 2 \\ z_G - z_C = z + 7 \end{vmatrix}$$
Enfin

De l'égalité
$$3\overrightarrow{GA} - 2\overrightarrow{GB} = \overrightarrow{CG}$$
,
$$\begin{cases}
6 - 3x - (8 - 2x) = x - 4 \\
3 - 3y - (-2 - 2y) = y - 2 \Leftrightarrow \\
9 - 3z - (10 - 2z) = z + 7
\end{cases}$$

$$2x = 2$$

$$2y = 7 \Leftrightarrow \begin{cases}
x = 1 \\
y = \frac{7}{2} \\
z = -4
\end{cases}$$

Ainsi
$$G\left(1, \frac{7}{2}, -4\right)$$

Exercice n°12

On calcule les coordonnées de
$$\begin{vmatrix} x_B - x_A = 2 \\ y_B - y_A = 3 \\ z_B - z_A = 4 \end{vmatrix} = \begin{vmatrix} x_C - x_A = 4 \\ y_C - y_A = 6 \\ z_C - z_A = 8 \end{vmatrix}$$

on

Puisque $\overline{AC} = 2 \overline{AB}$, les <u>vecteurs</u> \overline{AB} et \overline{AC} sont <u>colinéaires</u>, donc les points A,B et C sont alignés.

Exercice n°13

ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$.

$$\overrightarrow{AB} \begin{vmatrix} x_B - x_A = -\frac{3}{2} \\ y_B - y_A = -1 \\ z_B - z_A = -\frac{9}{2} \end{vmatrix}$$

Les coordonnées de \overrightarrow{AB} sont

Si on note
$$D(x;y;z)$$
, les coordonnées de \overrightarrow{DC} sont
$$\begin{vmatrix} x_C - x = -x \\ y_C - y = -5 - y \\ z_C - z = 3 - z \end{vmatrix}$$
.

$$\begin{cases} -x = -\frac{3}{2} & \begin{cases} x = \frac{3}{2} \\ -5 - y = -1 \Leftrightarrow \end{cases} \begin{cases} y = -4 \\ z = \frac{15}{2} \end{cases}$$
L'égalité $\overrightarrow{AB} = \overrightarrow{DC}$ entraîne donc

Les coordonnées de D sont donc $\boxed{D\left(\frac{3}{2}; -4; \frac{15}{2}\right)}$

Exercice n°14

$$\overrightarrow{AB} \begin{vmatrix} x_B - x_A = -2 \\ y_B - y_A = 1 \end{vmatrix} \xrightarrow{AC} \begin{vmatrix} x_C - x_A = 1 \\ y_C - y_A = 0 \end{vmatrix}$$

$$z_B - z_A = \frac{1}{2}$$

On calcule les coordonnées des vecteurs

$$\overrightarrow{AD} \begin{vmatrix} x_D - x_A = 0 \\ y_D - y_A = 1 \\ z_D - z_A = -\frac{1}{2} \end{vmatrix}$$

D'après leur coordonnées, on constate que $\overrightarrow{AD} = \overrightarrow{AB} + 2 \overrightarrow{AC}$, ce qui implique que le point D appartient au plan formé par les trois autres points A,B,C, donc que A,B,C et D sont coplanaires

Exercice n°15

- 1) Un <u>vecteur normal</u> au <u>plan</u> P est le <u>vecteur</u> $\vec{n} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$
- 2) a) Un point M de P est, par exemple M(0;0;7)

b) Le point L(1;-1;2) appartient au <u>plan</u> P si et seulement si ses coordonnées vérifient l'<u>équation</u> du <u>plan</u> P.

On calcule
$$x_L+3y_L-z_L+7=1+3x(-1)-2+7=3 \neq 0$$

Les coordonnées de L ne vérifiant pas l'équation du plan P, le point L n'appartient pas à P

c) Le point N(2;5;z) appartient au <u>plan</u> P si et seulement si ses coordonnées vérifient l'équation du <u>plan</u> P, donc si et seulement si

$$x_N+3y_N-z_N+7=0 <=>2+3x5-z+7=0 <=>z=24.$$

Le point N est donc N(2;5;24)

Exercice n°16

- 1) Un <u>vecteur normal</u> au <u>plan</u> P est le <u>vecteur</u> \vec{n} $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$
- 2) Notons $A(x_A; y_A; z_A)$.

Si A appartient à l'axe des abscisses (Ox), alors $y_A = z_A = 0$.

Si de plus A appartient au <u>plan</u> P, ses coordonnées vérifient l'<u>équation</u> de P, à savoir $2x_A+y_A+z_A=6<=>2x_A=6<=>x_A=3$

Ainsi A(3;0;0)

b) Notons $B(x_B; y_B; z_B)$.

Si B appartient à l'axe (0y), alors $x_B=z_B=0$.

Si de plus B appartient au <u>plan</u> P, ses coordonnées vérifient l'<u>équation</u> de P, à savoir $2x_B+y_B+z_B=6 <=> y_B=6$.

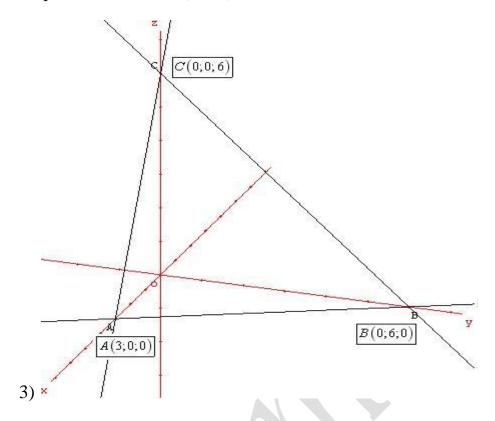
Le point B est donc B(0;6;0)

c) Notons $C(x_C; y_C; z_C)$.

Si C appartient à l'axe (Oz), alors $x_C = y_C = 0$.

Si de plus C appartient au <u>plan</u> P, ses coordonnées vérifient l'équation de P, à savoir $2x_C+y_C+z_C=6<=>z_C=6$.

Le point C est donc C(0;0;6)



Exercice n°17

$$\overrightarrow{AB} \begin{vmatrix} x_B - x_A = 5 \\ y_B - y_A = -1 \\ z_B - z_A = -5 \end{vmatrix}$$

1) On calcule les coordonnées des <u>vecteurs</u> $\begin{vmatrix} x_C - x_A = 4 \\ & & \end{vmatrix} x_D - x_C = 5$

$$\overrightarrow{AC} \begin{vmatrix} x_C - x_A = 4 \\ y_C - y_A = -1 \\ z_C - z_A = -3 \end{vmatrix} et \begin{vmatrix} x_D - x_C = 5 \\ y_D - y_C = -1 \\ z_D - z_C = -5 \end{vmatrix}$$

2) a) \overrightarrow{AB} et \overrightarrow{AC} ne sont pas <u>colinéaires</u> car il n'existe pas de <u>réel</u> k unique

$$\begin{cases} 5k = 4 \\ -k = -1 \\ -5k = -3 \end{cases}$$

satisfaisant aux trois conditions

b) A la lecture de leur coordonnées, on constate que $\overrightarrow{AB} = \overrightarrow{CD}$, donc que (AB)//(CD)

3) a) On calcule :
$$2x_A+5y_A+z_A=2x(-3)+5x4+6=-6+20+6=20$$
, puis

$$2x_B+5y_B+z_B=2x_2+5x_3+1=4+15+1=20$$

$$2x_C + 5y_C + z_C = 2x1 + 5x3 + 3 = 2 + 15 + 3 = 20$$

$$2x_D+5y_D+z_D=2x6+5x2+(-2)=12+10-2=20$$

Les coordonnées e A,B,C et D vérifient donc cette équation.

b) Si A,B et S sont alignés, alors les <u>vecteurs</u> \overrightarrow{AB} et \overrightarrow{AS} sont <u>colinéaires</u>.

Il existe donc $t \in \mathbb{R}$ tel que $\overrightarrow{AS} = t \overrightarrow{AB}$

Notons S(x;y;z).

Alors
$$\begin{vmatrix} x_S - x_A = x + 3 \\ y_S - y_A = y - 4 \\ z_S - z_A = z - 6 \end{vmatrix}$$
, et de l'égalité $\overrightarrow{AS} = t$ \overrightarrow{AB} on
$$\begin{cases} x + 3 = 5t \\ y - 4 = -t \\ z - 6 = -5t \end{cases} \Leftrightarrow \begin{cases} x = 5t - 3 \\ y = -t + 4 \\ z = -5t + 6 \end{cases}$$

Mais puisque $x_S=7$, on aura alors 5t-3=7 <=> t=2.

Le point S est donc S(7;2;-4)

c) Si O,F et P sont alignés, alors les <u>vecteurs</u> \overrightarrow{OF} et \overrightarrow{OP} sont <u>colinéaires</u>.

Il existe donc $t \in \mathbb{R}$ tel que $\overrightarrow{OP} = t \overrightarrow{OF}$

Notons P(x;y;z).

De l'égalité
$$\overrightarrow{OP} = t$$
 \overrightarrow{OF} on déduit
$$\begin{cases} x = t \\ y = t \\ z = t \end{cases}$$

Mais puisque le point P vérifie l'équation de (E) on doit avoir $2t+5t+t=20 <=>t=\frac{5}{2}$.

Ainsi
$$P(2;2;2)$$

Exercice n°18

Un <u>vecteur normal</u> au <u>plan</u> P_1 : -x+y+2z-1=0 est le <u>vecteur</u> \vec{n} $\begin{pmatrix} -1\\1\\2 \end{pmatrix}$

Un <u>vecteur normal</u> au <u>plan</u> $P_2: 3x-y=0$ est le <u>vecteur</u> $\vec{n} \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$

Un <u>vecteur normal</u> au <u>plan</u> $P_3: 2y-1=0$ est le <u>vecteur</u> $\vec{n} \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$

Un <u>vecteur normal</u> au <u>plan</u> $P_4: 2x-z+3=0$ est le <u>vecteur</u> $\vec{n} \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$

Exercice n°19

1) Si $\sqrt[n]{2}$ est un <u>vecteur normal</u> au <u>plan</u> P_1 , celui-ci a une <u>équation</u> de la forme P_1 : 3x+2y+z+d=0

On utilise les coordonnées du point A(2;-3;5) pour déterminer d.

$$3x_A + 2y_A + z_A + d = 0 < = > d = -3x_A - 2y_A - z_A$$
, c'est-à-dire $d = -3x_A - 2x_A - 2$

L'équation de P_1 est donc P_1 : 3x+2y+z-5=0

2) Si \vec{n} $\begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix}$ est un <u>vecteur normal</u> au <u>plan</u> P_2 , celui-ci a une <u>équation</u> de la forme P_2 : 5x+3y+2z+d=0

On utilise les coordonnées du point A(4;-2;1) pour déterminer d.

$$5x_A+3y_A+2z_A+d=0 <=> d=-5x_A-3y_A-2z_A$$
, c'est-à-dire $d=-5x4-3x(-3)-2x1=-16$.

L'équation de P_2 est donc P_2 : 5x+3y+2z-16=0

3) Si \vec{n} $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ est un <u>vecteur normal</u> au <u>plan</u> P_3 , celui-ci a une <u>équation</u> de la forme P_3 : 2y+z+d=0

On utilise les coordonnées du point A(1;1;0) pour déterminer d.

$$2y_A+z_A+d=0 <=> d=-2y_A-z_A$$
, c'est-à-dire $d=-2x1-0=-2$.

L'équation de P_3 est donc P_3 : 2y+z-2=0

Exercice n°20

- 1) Un <u>vecteur normal</u> au <u>plan</u> P d'<u>équation</u>: 2x-3y+6z-18=0 est $\vec{n} \begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix}$
- 2) Si le <u>plan</u> P' est parallèle au <u>plan</u> P, alors $\sqrt[n]{2}$ est aussi un <u>vecteur</u> normal à P' qui aura donc une <u>équation</u> de la forme 2x-3y+6z+d=0.

On détermine d grâce aux coordonnées du point B(6;-4;-4):

$$2x_B-3y_B+6z_B+d=0 <=> d=-2x_B+3y_B-6z_B=0.$$

L'équation de P' est donc 2x-3y+6z=0.

Exercice n°21

Notons A(x;y;z). Si \overrightarrow{AB} et \overrightarrow{n} sont <u>colinéaires</u>, il existe $t \in \mathbb{R}$ tel que \overrightarrow{AB} = t \overrightarrow{n}

On calcule
$$\overrightarrow{AB} \begin{vmatrix} x_B - x_A = 6 - x \\ y_B - y_A = -4 - y \\ z_B - z_A = -4 - z \end{vmatrix} = t \overrightarrow{n} \begin{vmatrix} 2t \\ -3t \\ 6t \end{vmatrix}.$$

De l'égalité
$$\overrightarrow{AB} = t \ \overrightarrow{n}$$
, on déduit
$$\begin{cases} 6 - x = 2t \\ -4 - y = -3t \Leftrightarrow \begin{cases} x = 6 - 2t \\ y = 3t - 4 \end{cases} \\ z = -4 - 6t \end{cases}$$

Mais si A est un point du <u>plan</u> P, ses coordonnées vérifient l'équation de P, à savoir $2x_A-3y_A+6z_A-18=0$,

donc
$$2(6-2t)-3(3t-4)+6(-4-6t)-18=0 \Leftrightarrow -49t=18 \Leftrightarrow t=-\frac{18}{49}$$

$$\begin{cases} x = 6 - 2 \times \left(-\frac{18}{49} \right) = \frac{330}{49} \\ y = 3 \times \left(-\frac{18}{49} \right) - 4 = -\frac{250}{49} \\ z = -4 - 6 \times \left(-\frac{18}{49} \right) = -\frac{88}{49} \end{cases}$$

Le point A est donc

La distance entre les <u>plans</u> parallèles P et P' est donnée par

$$AB = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

$$= \sqrt{\left(6 - \frac{330}{49}\right)^2 + \left(-4 + \frac{250}{49}\right)^2 + \left(-4 + \frac{88}{49}\right)^2}$$

$$= \sqrt{\frac{1296}{2401} + \frac{2916}{2401} + \frac{11664}{2401}} = \sqrt{\frac{15876}{2401}} = \sqrt{\frac{324}{49}} = \frac{18}{7}$$

Exercice n°22

1) Un <u>vecteur normal</u> du <u>plan</u> P d'équation 2x+y-z=5 est $\vec{n}_1\begin{pmatrix} 2\\1\\-1 \end{pmatrix}$

Un <u>vecteur normal</u> du <u>plan</u> P' d'équation $-x + \frac{1}{2}y - \frac{1}{2}z = 7$ est $\vec{n}_2 \begin{pmatrix} -1 \\ \frac{1}{2} \\ \frac{-1}{2} \end{pmatrix}$

Les <u>vecteurs</u> $n_1 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ et $\frac{\vec{n}_2}{2} \begin{pmatrix} -1 \\ \frac{1}{2} \\ \frac{-1}{2} \end{pmatrix}$ n'étant pas <u>colinéaires</u> (il n'existe pas

$$2k = -1$$

$$1 \times k = \frac{1}{2}$$

$$(-1) \times k = -\frac{1}{2}$$

de <u>réel</u> k unique satisfaisant à la fois

les deux <u>plans</u> P et P' ne sont pas <u>parallèles</u>

2) Un <u>vecteur normal</u> du <u>plan</u> P <u>d'équation</u> x+3y-5z=4 est $\vec{n}_1\begin{pmatrix} 1\\3\\-5 \end{pmatrix}$

Un <u>vecteur normal</u> du <u>plan</u> P' <u>d'équation</u> -3x-9y+15z=-6 est $\vec{n}_2\begin{pmatrix} -3\\ -9\\ 15 \end{pmatrix}$

Puisque $\vec{n}_2 = -3\vec{n}_1$, les <u>vecteurs</u> \vec{n}_1 et \vec{n}_2 sont <u>colinéaires</u>, donc les deux <u>plans</u> P et P' sont <u>parallèles</u>.

3) Un <u>vecteur normal</u> du <u>plan</u> P <u>d'équation</u> x+3y-2z=8 est $\vec{n}_1\begin{pmatrix} 1\\3\\-2 \end{pmatrix}$

Un <u>vecteur normal</u> du <u>plan</u> P' <u>d'équation</u> -4x-12y+8z=-32 est $\vec{n}_2\begin{pmatrix} -4\\-12\\8 \end{pmatrix}$

Puisque $\vec{n}_2 = -4\vec{n}_1$, les <u>vecteurs</u> \vec{n}_1 et \vec{n}_2 sont <u>colinéaires</u>, donc les deux <u>plans</u> P et P' sont <u>parallèles</u>

Exercice n°23

1) On calcule les coordonnées des vecteurs $\begin{vmatrix} x_B - x_A = 1 \\ y_B - y_A = -1 \\ z_E - z_A = 1 \end{vmatrix}$ $\begin{vmatrix} x_C - x_A = -2 \\ y_C - y_A = 1 \\ z_C - z_A = 0 \end{vmatrix}$

Les <u>vecteurs</u> \overrightarrow{AB} et \overrightarrow{AC} ne sont pas <u>colinéaires</u> car il n'existe pas $\begin{cases} k=-2\\ -k=1 \end{cases}$

de <u>réel</u> k unique satisfaisant aux trois conditions k=0

Les points A,B et C ne sont donc pas alignés, donc définissent un \underline{plan} (ABC).

b) Notons \vec{n} (a;b;c) les coordonnées d'un <u>vecteur normal</u> à (ABC)

Puisque $\overrightarrow{AB} \cdot \overrightarrow{n} = 0$, on a 1xa+(-1)xb+1xc=0 <=>a-b+c=0

Puisque $\overrightarrow{AC} \cdot \vec{n} = 0$, on a (-2)xa+1xb+0xc=0<=>-2a+b=0

 $\int_{C} a - b + c = 0$

Le <u>système</u> [-2a+b=0] de deux équations à trois inconnues admettant une infinité de solutions, on doit « fixer arbitrairement » une valeur pour l'une quelconque des inconnues.

L'énoncé nous conseille de choisir a=1

$$\begin{cases} a=1\\ 1-b+c=0 \Leftrightarrow \begin{cases} a=1\\ c=b-1=1\\ b=2 \end{cases}$$

Le système devient alors

Un <u>vecteur normal</u> à (ABC) est donc \vec{n} (1;2;1).

c) Une <u>équation</u> du <u>plan</u> (ABC) est alors x+2y+z+d=0.

On détermine d en utilisant les coordonnées de l'un des points de ce <u>plan</u>, par exemple A(2;1;1).

On obtient
$$x_A + 2y_A + z_A + d = 0 < = > d = -x_A - 2y_A - z_A = -2 - 2 - 1 = -5$$

Une <u>équation</u> du <u>plan</u> (ABC) est alors x+2y+z-5=0.

2) Une <u>équation</u> de (ABC) étant de la forme ax+by+cz+d=0, les coordonnées de A,B et C vérifient cette <u>équation</u> de plan, nous permettent de dresser le <u>système</u> de trois <u>équations</u> à 4 inconnues :

$$\begin{cases} ax_A + by_A + cz_A + d = 0 \\ ax_B + by_B + cz_B + d = 0 \\ ax_C + by_C + cz_C + d = 0 \end{cases} \Leftrightarrow \begin{cases} 2a + b + c + d = 0 \\ 3a + 2c + d = 0 \\ 2b + c + d = 0 \end{cases}$$

Ce <u>système</u> admettant une infinité de solutions, on doit « fixer arbitrairement » une valeur pour l'une quelconque des inconnues.

On fixe par exemple a = 1

Le système devient :

$$\begin{cases} b+c+d=-2 & L_1 \\ 2c+d=-3 & L_2 \Leftrightarrow \\ 2b+c+d=0 & L_3 \end{cases} \begin{cases} b+c+d=-2 & L_1 \\ 2c+d=-3 & L_2 \Leftrightarrow \\ -c-d=4 & L_4=L_3-2L_1 \end{cases} \Leftrightarrow \begin{cases} b+c+d=-2 & L_1 \\ 2c+d=-3 & L_2 \Leftrightarrow \\ c=1 & L_4+L_2 \end{cases} \Leftrightarrow \begin{cases} b=-2-c-d=2 \\ d=-3-2c=-5 \\ c=1 \end{cases} = L_1$$

On retrouve alors l'équation x+2y+z-5=0

Exercice n°24

1) P et P' admettent pour <u>vecteurs</u> normaux les <u>vecteurs</u> $n_1 \begin{pmatrix} cost \\ sint \\ -1 \end{pmatrix}$ et $n_2 \begin{pmatrix} cost \\ sint \\ 1 \end{pmatrix}$

Le produit scalaire $\vec{n_1} \cdot \vec{n_2} = (\cos t)(\cos t) + (\sin t)(\sin t) + (-1)(1) = (\cos t)^2 + (\sin t)^2 - 1 = 1 - 1 = 0$ nous permet d'affirmer que les <u>plans</u> P et P' sont <u>perpendiculaires</u>.

2) l'axe Ox est parallèle à P pour toutes les valeurs de t pour lesquelles $\overrightarrow{n_1}(\cos t; \sin t; -1)$, vecteur normal à P sera orthogonal à tout vecteur directeur de l'axe Ox.

Un <u>vecteur</u> directeur de l'axe (Ox) est \vec{u} (1;0;0). Le produit scalaire $\vec{n_1} \cdot \vec{u} = (\cos t) \times 1 + (\sin t) \times 0 + (-1)(0) = \cos t$.

Pour $t = \frac{\pi}{2} [2 \pi]$, $\vec{n_1} \cdot \vec{u} = \cos t = 0$, donc l'axe (Ox) est <u>parallèle</u> à P.

3)Les coordonnées des points de la droite intersection des deux plans vérifient le système
$$\begin{cases} (\cos t)x + (\sin t)y - z = 0 \\ (\cos t)x + (\sin t)y + z = 0 \end{cases}$$
 soustraction des deux lignes,
$$\begin{cases} (\cos t)x + (\sin t)y + z = 0 \\ 2z = 0 \end{cases} \Leftrightarrow \begin{cases} (\cos t)x + (\sin t)y = 0 \\ z = 0 \end{cases}$$
.

Si
$$t = \frac{\pi}{2} [2 \pi]$$
, puisque $\cos t = 0$ et $\sin t = 1$, le système est équivalent
$$\begin{cases} x = \lambda \\ y = 0, \lambda \in \mathbb{R} \\ z = 0 \end{cases}$$

Un <u>vecteur directeur</u> de la droite intersection des deux <u>plans</u> est \vec{v} (1;0;0)

$$\begin{cases} \frac{\pi}{2} & \begin{cases} (\cos t)x + (\sin t)y = 0 \\ z = 0 \end{cases} \Leftrightarrow \begin{cases} x = -\lambda \tan t \\ y = \lambda \end{cases}, \lambda \in \mathbb{R} \\ z = 0 \end{cases}$$
Un vecteur directeur de la droite intersection des deux plans est \vec{v} (-tan t ;1;0)

4) La distance de A(cos t, sin t, -3) au plan P
$$\frac{\left|(\cos t)(\cos t) + (\sin t)(\sin t) + 3\right|}{\sqrt{(\cos t)^2 + (\sin t)^2 + (-1)^2}} = \frac{\left|1 + 3\right|}{\sqrt{1 + 1}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$$
vaut