EXERCICE (conique et complexe)

Guesmi.B

A tout point M du plan /M(x;y) son affixe z=x+iy; M' d'affixe z^2 et z'' d'affixe z^5

On considère l'ensemble $E=\{M \in P \text{ tels que } M; M' \text{ et } M'' \text{ sont align\'es}\}$

Déterminer et construire E

CORRECTION

Soit $R = (o; \vec{\iota}; \vec{\jmath})$ un repère orthonormé

$$\mathsf{M}(\mathsf{z})\,;\mathsf{M}'(\mathsf{z}^2)\,\,\mathsf{et}\,\,\mathsf{M}''(\mathsf{z}^5)\,\,\mathsf{sont}\,\,\mathsf{align\acute{e}s} \Leftrightarrow \frac{z_{\overline{MM}''}}{z_{\overline{MM}'}}\,\in IR$$

$$\Leftrightarrow \frac{z_{M''}-z_{M}}{z_{M'}-z_{M}}\,\in IR$$

$$\Leftrightarrow \frac{z^5-z}{z^2-z}\,\,\in IR$$

$$\Leftrightarrow \frac{z^4-1}{z-1}\,\in IR\,\,\,\mathit{et}\,\,z\neq 0$$

$$\Leftrightarrow (z+1)(z^2+1)\,\in IR\,\,\,\,z\neq 0\,\,\mathit{et}\,\,z\neq 1$$

$$\Leftrightarrow 3x^2-y^2+2x+1=0\ \ (1)\,\,\mathsf{avec}x\neq 0; y\neq 0\,\,\mathit{et}\,\,x\neq 1$$

Cad $M \neq 0$ et Mn' appartient pas à la droite $\Delta : x=1$

(1)⇔3(x +
$$\frac{1}{3}$$
)² - y² = $\frac{2}{3}$
⇔ $\frac{y^2}{\sqrt{\frac{2}{3}}}$ - $\frac{(x+\frac{1}{3})^2}{\sqrt{2}}$ = 1 (H) (Hyperbole) prive de 0 et Δ :x=1 (O n'estpas un point de(H))

 $K(1;\sqrt{6})et K'(1;-\sqrt{6})$ sont deux points de (H)

Soit $\Omega(\frac{1}{3}; 0)$ un point M(x,y) dans le repère R et M(X;Y) dans le repère R'= $(\Omega; \vec{t}; \vec{j})$

Donc
$$\overrightarrow{OM} = \overrightarrow{O\Omega} + \overrightarrow{\Omega M}$$
 on aura
$$\begin{cases} x = X + \frac{1}{3} \\ y = Y \end{cases}$$
 (2)

Donc l'équation sera $\frac{Y^2}{\left(\sqrt{\frac{2}{3}}\right)^2} - \frac{X^2}{\sqrt{2}^2} = 1$ posons alors $a = \sqrt{2}$ et $b = \sqrt{\frac{2}{3}}$ et alors

 $c = \sqrt{a^2 + b^2} = 2\sqrt{\frac{2}{3}}$ donc dans le repère R'; (E) est une hyperbole

De foyer s $F\left(0;2\sqrt{\frac{2}{3}}\right)$ et $F^{'}(0;-2\sqrt{\frac{2}{3}})$ d'axe transverse de sommets $B\left(0;\sqrt{\frac{2}{3}}\right)$ et $B^{'}(0;-\sqrt{\frac{2}{3}})$

D'excentricité $e = \frac{c}{b} = 2$ et de directrices D associée à F; $D: Y = \frac{b^2}{c} = \frac{1}{\sqrt{6}}$

Et D' associée à F' $D': Y = -\frac{1}{\sqrt{6}}$

Dans le repère R et vu les relations de (2)

$$F\left(\frac{1}{3}; 2\sqrt{\frac{2}{3}}\right); F'\left(\frac{1}{3}; -2\sqrt{\frac{2}{3}}\right), B\left(\frac{1}{3}; \sqrt{\frac{2}{3}}\right); B'\left(\frac{1}{3}; -\sqrt{\frac{2}{3}}\right)$$

$$D: y = \frac{1}{\sqrt{6}} \text{ et } D': y = -\frac{1}{\sqrt{6}}$$

 $E=(H)-\{K; K'\}$

Si j'ai commis une erreur de calcul

EXERCICE2

 $R=(0;\vec{\imath};\vec{\jmath})un$ repere orthonormé donner l'equation de la parabole de foyer F(1/2;2) et de directrice la droite D:x=3

CORRECTION

Soit H le projeté orthogonal de F sur D donc FH=5/2 soit S le milieu de [FH]

Donc le paramètre de la parabole (P) est p=5/2

Soit R'= $(S; \vec{t}; \vec{j})$ dans R' un point M(X;Y) l'équation de la parabole est $Y^2 = 2pX = 5X$ (1)

Dans R on a: M(x;y)

S(7/4;2) dans R alors $\begin{cases} x = X + 7/4 \\ y = Y + 2 \end{cases}$

En remplaçant dans (1) (P): $4y^2-16y-5x+51=0$