Problèmes de révision

Problème 1 correction

Guesmi.B

Le plan P est muni d'un repère orthonormé $(O;\vec{i};\vec{j})$ d'unité graphique 2 cm.

On s'intéresse dans ce problème à une fonction f définie sur l'intervalle

On note C la courbe représentative de la fonction f dans le plan P.

On note In la fonction logarithme népérien.

Partie A: Etude d'une fonction auxiliaire

Soit g la fonction définie sur l'intervalle]0 ; $+\infty$ [par : $g(x) = x^2 - 1 + \ln x$. On désigne par g' la fonction dérivée de la fonction g.

- **1.** Calculer g'(x) pour tout réel x appartenant à l'intervalle]0; $+\infty$ [. En déduire le sens de variation de la fonction g sur l'intervalle]0; $+\infty$ [.
- **2.** Calculer g(1) et en déduire l'étude du signe de g(x) pour x appartenant à l'intervalle]0; + ∞ [.

Partie B : Détermination de l'expression de la fonction f

On admet qu'il existe deux constantes réelles a et b telles que, pour tout nombre réel x appartenant à]0; $+ \infty [$,

$$f(x) = ax + b - \frac{\ln x}{x}$$

1. on désigne par f' la fonction dérivée de la fonction f.

Calculer f'(x) pour tout réel x appartenant à l'intervalle]0; + ∞ [.

2. Sachant que la courbe C passe par le point de coordonnées (1 ; 0) et qu'elle admet en ce point une tangente horizontale, déterminer les nombres *a* et *b*.

Partie C : Etude de la fonction f

On admet désormais que, pour tout nombre réel x appartenant à l'intervalle]0; $+ \infty [$,

$$f(x) = x - 1 - \frac{\ln x}{x}$$

- **1. a.** Déterminer la limite de la fonction f en 0 et donner une interprétation graphique de cette limite.
- **b.** Déterminer la limite de la fonction f en + ∞ .
- 2. a. Vérifier que, pour tout réel x appartenant à l'intervalle]0 ; + ∞ [,

$$f'(x) = \frac{g(x)}{x^2}$$

- **b.** Etablir le tableau de variation de la fonction f sur l'intervalle]0; + ∞ [.
- **c.** En déduire le signe de f(x) pour x appartenant à l'intervalle]0; + ∞ [.
- **3.** On considère la droite D d'équation y = x 1.
- a. Justifier que la droite D est asymptote à la courbe C.
- **b.** Etudier les positions relatives de la courbe C et de la droite D.
- **c.** Tracer la droite D et la courbe C dans le plan P muni du repère $(O;\vec{i};\vec{j})$

Partie D: Calcul d'aire

On note A la mesure, exprimée en cm², de l'aire de la partie du plan P comprise entre la courbe C, l'axe des abscisses, et les droites d'équation x = 1 et x = e.

1. On considère la fonction H définie sur l'intervalle]0; + ∞ [par H(x) = $(\ln x)^2$.

On désigne par H ' la fonction dérivée de la fonction H.

- **a.** Calculer H'(x) pour tout réel x appartenant à l'intervalle]0; + ∞ [
- **b.** En déduire une primitive de la fonction f sur l'intervalle]0; + ∞ [
- 2. a. Calculer A.
- b. Donner la valeur de A, arrondie au mm²

Probleme2 correction

Partie A

Soit g la fonction définie sur]0 ; $+\infty$ [par g(x) = $x^2 + 3x - 4 + 4 \ln x$.

- **1.** Déterminer les limites de g en 0 et $+\infty$.
- 2. Soit g' la dérivée de g. Montrer que :

$$g'(x) = \frac{2x^2 + 3x + 4}{x}$$

- **3.** Dresser le tableau de variations de g sur]0; $+\infty[$.
- **4.** Calculer g(1) et en déduire le signe de g(x) sur]0; $+\infty[$.

Partie B

Soit f la fonction définie sur]0; $+\infty[$ par :

$$f(x) = x + 3 \ln x - \frac{4 \ln x}{x}$$

On appelle (C) la courbe de f dans un repère orthonormé $(O;\vec{i};\vec{j})$ (unité 3 cm).

- **1. a.** Déterminer la limite de f en + ∞ .
- **b.** Déterminer la limite de f en 0 ; on remarquera que :

$$f(x) = x + \left(3 - \frac{4}{x}\right) \ln x$$

Que peut-on en déduire?

2. a. Montrer que pour tout x strictement positif :

$$f'(x) = \frac{g(x)}{x^2}$$

- **b.** En utilisant les résultats de la partie A, étudier les variations de f sur l'intervalle]0; $+\infty$ [.
- **c.** Dresser le tableau de variations de f sur l'intervalle]0; + ∞ [.
- **3.** On rappelle que pour tout x de l'intervalle]0; $+\infty[$,

$$f(x) = x + \left(3 - \frac{4}{x}\right) \ln x$$

Donner les solutions dans l'intervalle]0; $+\infty[$ de l'équation f(x) = x.

- **4.** Tracer (C) et la droite d'équation y = x.
- 5. Interpréter graphiquement le résultat de la question 3.

Partie C

1. Montrer que la fonction F définie sur l'intervalle]0 ; + ∞[par

$$F(x) = \frac{1}{2}x^2 - 3x + 3x \ln x - 2(\ln x)^2$$

est une primitive de f sur l'intervalle]0; $+\infty[$.

- **2.** On considère dans le plan le domaine (D) délimité par la courbe (C), l'axe des abscisses et les droites d'équations x = 1 et x = e.
- a. Hachurer le domaine (D).
- **b.** Calculer l'aire du domaine (D) en unités d'aires puis en cm². On donnera la valeur exacte puis la valeur approchée arrondie au mm² près.

Probleme3 correction

Le plan est rapporté au repère orthonormé $(O;\vec{i};\vec{j})$. (L'unité graphique est 2 cm).

Le but du problème est l'étude de la fonction f définie sur l'intervalle $]0;+\infty$ [par :

$$f(x) = x - 1 + \frac{2}{x} - \frac{2\ln(x)}{x}$$

puis de calculer une aire.

I) Etude d'une fonction auxiliaire g

On note g la fonction définie sur l'intervalle]0;+ ∞ [par : $g(x) = x^2 - 4 + 2 \ln(x)$.

- 1) Calculer la fonction dérivée g' de la fonction g.
- 2) Déterminer le sens de variation de la fonction g.

(On ne demande pas les limites en 0 et en + ∞.)

- 3) Résolution de l'équation g(x) = 0.
- a) Démontrer que sur l'intervalle [1; 2] l'équation g(x) = 0 possède une solution unique α .
- **b)** Donner un encadrement d'amplitude 10^{-2} de ce nombre α .
- 4) Déduire de ce qui précède le signe de g(x) suivant les valeurs de x, dans l'intervalle $]0;+\infty[$.

II) Etude de la fonction f

- 1) Déterminer la limite de f en 0. Qu'en déduit-on pour la courbe C?
- 2) Etude en +∞.
- a) Déterminer la limite de f en $+\infty$.
- **b)** Démontrer que la droite D d'équation y = x 1 est asymptote à la courbe C?.
- c) Déterminer les coordonnées du point A commun à la courbe C et à la droite D.
- **d)** Etudier la position de la courbe C par rapport à la droite D.
- **3)** Etude des variations de *f*.
- a) Déterminer la fonction dérivée f ' de la fonction fVérifier que pour tout réel x appartenant à l'intervalle $]0;+\infty[$; f ' $(x) = g(x)/x^2$, où g est la fonction étudiée dans la partie I.
- **b)** En utilisant les résultats de la partie I, dresser le tableau des variations de la fonction f
- **4)** On note T la tangente à la courbe C au point d'abscisse e^2 . Montrer que T est parallèle à l'asymptote D.
- **5)** Dans le repère $(O; \vec{i}; \vec{j})$, tracer la droite D, la tangente T et la courbe C à l'aide de l'étude précédente. (On prendra $f(\alpha) = 1,25 \text{ m}$)

III) Calcul d'une aire

On définit sur l'intervalle]0;+∞[la fonction H par :

$$H(x) = \frac{x^2}{2} - x + 2 \ln x - (\ln x)^2$$

1) Démontrer que H est une primitive de la fonction f sur l'intervalle $]0;+\infty$

[.

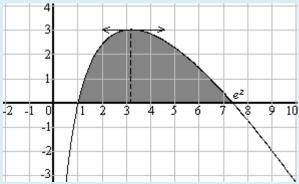
- 2) Soit E la région du plan limitée par la courbe C, l'axe des abscisses et les droites d'équations x = 1 et x = e.
- a) Hachurer la région E sur votre figure.
- **b)** On note S l'aire, exprimée en unité d'aire, de la région E Déterminer la valeur exacte de S.
- c) Donner la valeur décimale approchée de cette aire, arrondie au mm²

Probleme4 correction

Dans une entreprise, on a modélisé le bénéfice réalisé, en milliers de dinars pour la vente de x centaines d'appareils par la fonction f définie sur l'intervalle] 0; + ∞ [par :

$$f(x) = -2x + (e^2 - 1) \ln x + 2$$

La courbe de la fonction f est donnée sur la figure ci-dessous :



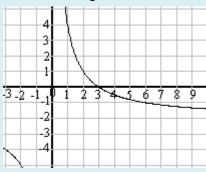
- **1.** Vérifier par le calcul que f(I) = 0 et $f(e^2) = 0$.
- 2. A l'aide du graphique, déterminer approximativement :
- **a)** le nombre d'appareils que l'entreprise doit fabriquer pour réaliser un bénéfice maximal et le montant de ce bénéfice ;
- **b)** les valeurs de x pour lesquelles le bénéfice réalisé est positif ou nul.
- **3. a)** Déterminer la dérivée f ' de la fonction f sur l'intervalle] 0 ; + ∞ [.
- **b)** Etudier le signe de f'(x) et en déduire le sens de variation de la fonction f
- c) En déduire le nombre d'appareils vendus par cette entreprise quand elle réalise le bénéfice maximal (le résultat sera arrondi à l'unité).
- **4.** Parmi les courbes données en annexe, une seule correspond à celle d'une primitive de f

Déterminer la courbe qui convient, en expliquant votre choix (on pourra s'appuyer sur le signe de f(x))

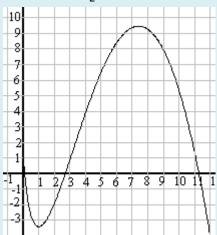
- **5.** En utilisant le résultat de la question précédente, en déduire, par une lecture graphique, une valeur approchée (en unité d'aire) de l'aire du domaine hachuré dans la figure ci- dessus.
- **6. a)** Démontrer que la fonction F définie sur l'intervalle] 0 ; + ∞ [par : $F(x) = x^2 + (3 e^2) x + (e^2 1) x \ln x$ est une primitive de f.
- **b)** Déterminer la valeur moyenne du bénéfice de l'entreprise sur l'intervalle où ce bénéfice est positif ou nul.

annexe (les courbes ne sont pas exactement les mêmes que sur l'original mais j'ai essayé de faire correspondre le plus possible ...)

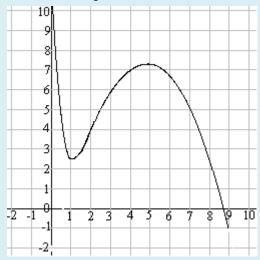
Courbe de F₁:



Courbe de F₂:



Courbe de F₃:



Probleme5 correction

Partie A: Résolution d'une équation différentielle

On considère l'équation différentielle (E): y' + y = -x - 1; où y désigne une fonction de la variable x, définie et dérivable sur l'ensemble des réels \mathbb{R} .

- **1. a)** Résoudre l'équation différentielle y' + y = 0.
- **b**) Déterminer la solution h de cette équation différentielle y' + y = 0 prenant la

valeur 1/e en x = 1.

2. Déterminer le nombre réel a tel que la fonction u définie sur \mathbb{R} par $u(x) = e^{-x} + ax$ soit solution de l'équation différentielle (E).

Partie B : Étude d'une fonction auxiliaire f

La fonction f est définie sur \mathbb{R} par : $f(x) = e^{-x} - x$.

- **1.** Déterminer les limites de la fonction f en $+\infty$ et $-\infty$.
- $\mathbf{2.}f$ ' désigne la fonction dérivée de la fonction f

Calculer, pour tout réel x, f'(x) puis en déduire le tableau de variations de la fonction f.

- **3. a)** Montrer que l'équation f(x) = 0 admet une solution unique α dans l'intervalle [0; 1].
- **b**) Donner un encadrement de α d'amplitude 0,01.
- **4.** Préciser le signe de f(x) sur l'intervalle [0;1].

Partie C : Calcul de Faire d'une partie du plan

La représentation graphique C_f de la fonction f, dans le plan muni d'un

repère $(O; \vec{i}; \vec{j})$ est tracée sur la feuille jointe en annexe, qui est à rendre avec la copie.

- **1.** Dans le demi-plan constitué des points d'abscisses positives, hachurer la partie D limitée par la courbe C_f , l'axe des abscisses et l'axe des ordonnées.
- **2.** Calculer en fonction de α la mesure, en unités d'aire, de l' aire de la partie D du plan.

Partie D : Étude d'une fonction g et représentation graphique

La fonction g est définie sur]- ∞ ; α [par :

$$g(x) = \frac{x}{e^{-x} - x}$$

(où α désigne le nombre réel trouvé à la partie B) et on note C_g sa courbe représentative dans un repère du plan.

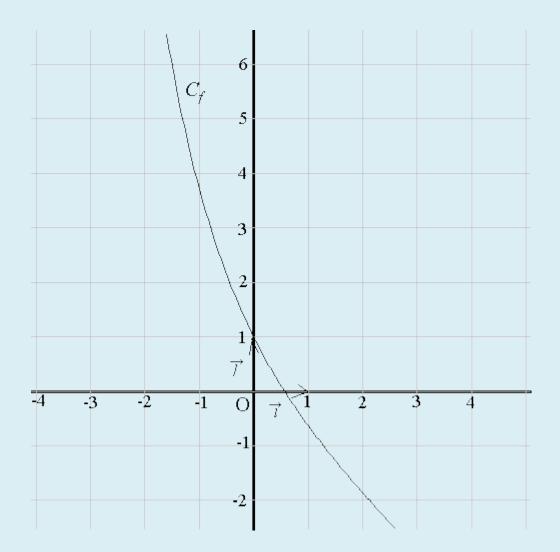
1. a) Vérifier que, pour tout $x \in]-\infty$; $\alpha[$

$$g(x) = \frac{xe^x}{1 - xe^x}$$

- **b**) En déduire la limite de la fonction g en -∞ et interpréter graphiquement cette limite.
- **2.** En utilisant les résultats trouvés dans la partie B question 4, déterminer la limite de la fonction g en α . Interpréter graphiquement cette limite.
- **3. a)** La fonction g' désignant la dérivée de la fonction g, montrer que pour tout $x \in]-\infty$; $\alpha[$:

$$g'(x) = \frac{e^{-x}(1+x)}{(e^{-x}-x)^2}$$

- **b**) En déduire les variations de la fonction g sur]- ∞ ; α [et dresser le tableau des variations de la fonction g.
- **4.** Tracer la courbe représentative C_g de la fonction g dans le repère figurant sur la feuille annexe à remettre avec la copie



Probleme6 correction

PARTIE A

Le plan est rapporté à un repère orthonormal $(\mathcal{O}\,;\vec{i}\,;\vec{j}\,)$

La courbe (C), donnée en <u>annexe 2</u>, est la représentation graphique de la fonction f définie sur $]0;+\infty[$ par: $f(x) = -x^2 + 10x - 9 - 8$ lnx.

- **1.** Déterminer la limite de f en 0. Que peut-on en déduire concernant la courbe ?
- **2.** En écrivant f(x) sous la forme

$$f(x) = x^{2} \left(-1 + \frac{10}{x} - \frac{9}{x^{2}} - \frac{8 \ln x}{x^{2}} \right)$$

déterminer la limite de f en +∞

3. Démontrer que, pour tout réel x de $]0;+\infty[$,

$$f'(x) = \frac{-2(x-1)(x-4)}{x}$$

où f' désigne la fonction dérivée de la fonction f.

- **4.** Étudier le signe de f'(x) suivant les valeurs de x dans l'intervalle $]0;+\infty[$.
- **5.** Dresser le tableau de variation de *f*
- **6. a.** Recopier et compléter le tableau de valeurs ci-dessous (les résultats seront arrondis à 10^{-4}).

X	6,18	6,19	6,2	6,21

b. L'équation f(x) = 0 admet deux solutions, 1 et α dans $]0;+\infty[$.

A l'aide de la question précédente, donner sans justification un encadrement à 10^{-2} près de α .

- **c.** Placer α sur le graphique de l'annexe 2.
- 7. Soit F la fonction définie sur]0;+∞[par :

$$F(x) = -\frac{x^3}{3} + 5x^2 - x - 8x \ln x$$

Démontrer que F est une primitive de f sur $]0;+\infty[$.

8. Hachurer la partie (P) du plan délimitée par l'axe des abscisses, la courbe (C) et les droites d'équation x = 3 et x = 6, puis donner la valeur exacte de la mesure, exprimée en unités d'aire, de l'aire de (P).

PARTIE B - Application économique.

Une entreprise doit produire entre 10 et 70 pièces par jour.

On admet que si x est la production journalière en dizaines de pièces alors le bénéfice réalisé en milliers d'euros est f(x), où f est la fonction étudiée dans les deux premières parties avec $x \in [1; 7]$.

1. Déterminer à l'aide de la courbe (C) de l'annexe 2, la quantité de pièces fabriquées par jour, à partir de laquelle l'entreprise commence à travailler à perte.

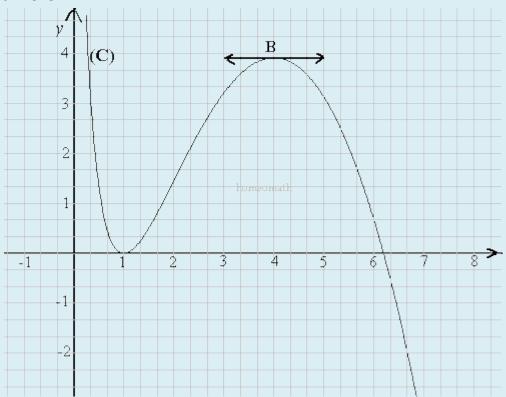
Donner une valeur approchée de cette valeur à 1 près.

- **2.** Par lecture graphique, indiquer la quantité de pièces que l'entreprise doit fabriquer par jour pour réaliser un bénéfice maximal.
- **3.** On admet que lorsque l'entreprise produit entre 30 et 60 pièces par jour sur une certaine période, le bénéfice journalier moyen en milliers de Dinars est donné par :

$$\frac{1}{3} \int_3^6 f(x) dx$$

A l'aide de la partie A, déterminer à 1 D près ce bénéfice journalier moyen.

annexe 2



Probleme7 correction

Les partie A et B sont indépendantes.

Partie A

Pour effectuer un examen médical, on injecte par piqûre intramusculaire une dose de 3 cm 3 d'une substance médicamenteuse dans le sang d'une malade à l'instant t = 0 (t exprimé en heures). Celle-ci passe alors progressivement dans le sang.

La diffusion atteint son maximum au bout d'une heure.

La courbe de l'annexe représente la quantité de substance présente dans le sang à l'instant t.

- 1. Construire sur la feuille annexe la tangente à la courbe au point d'abscisse 2, sachant que son coefficient directeur est égal à (0,9).
- 2. A partir du graphique commenter l'évolution de la quantité de substance médicamenteuse contenue dans le sang.
- 3. Pour pouvoir effectuer l'examen, il faut que la quantité de substance médicamenteuse dans le sang supérieure ou égale à 0,5 cm³. Déterminer graphiquement de combien de temps on dispose pour faire cet examen.

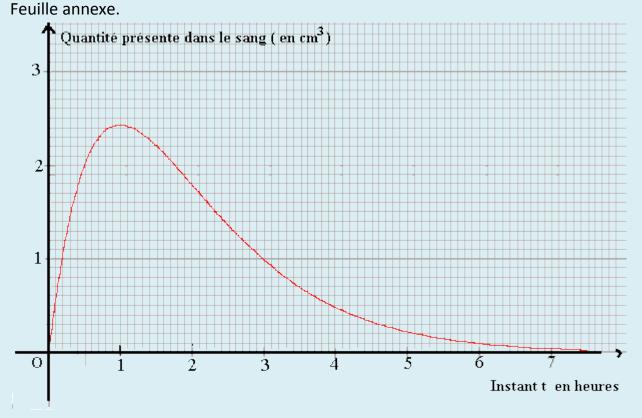
Partie B.

On a injecté par piqûre intraveineuse 1 cm³ de médicament à un malade à

l'instant t=0. La substance se répartir immédiatement dans le sang et elle est ensuite progressivement éliminée. Expérimentalement, on montre que la quantité q(t) de substance présente dans le sang à l'instant t est donnée par la relation : $q(t) = e^{-0.15t}$ où t est exprimée en heures.

- 1. Quel volume de ce produit reste-t-il au bout de 90 minutes ?
- 2. Quel volume de ce produit le malade a-t-il éliminé au bout d'une demiheure ? d'une heure ?
- 3. On donne $q'(t) = -0.15e^{-0.15t}$ où q' désigne la fonction dérivée de la fonction q.

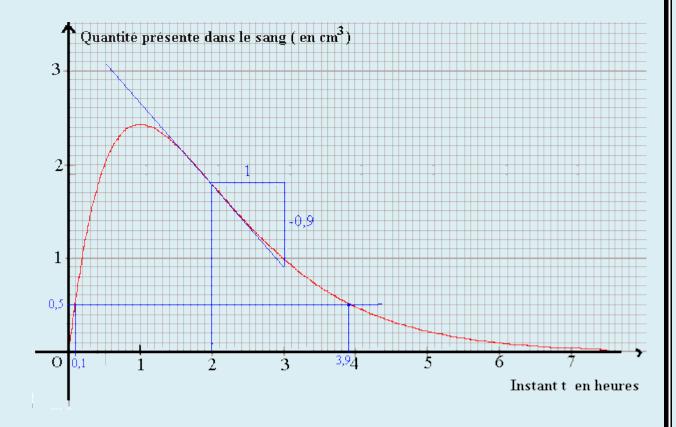
Etudier les variations de la fonction q sur l'intervalle sur l'intervalle [0 ; 9] puis tracer sa représentation graphique dans un repère orthogonal en prenant pour unités 2 cm en abscisses et 10 cm en ordonnées.



Correction:

Partie A:

1.



2. De t = 0 à 1 heure, quantité de substance présente dans le sang augmente.

Elle diminue progressivement de 1 heure à 7 h 30.

3. Il suffit de regarder sur quel(s) intervalle(s) la courbe est au dessus de la droite d'équation $y = 0.5 \text{ cm}^3$, c'est sur l'intervalle [0.1; 3.9]

On dispose de 3,8 heures (3,9 - 0,1) pour faire l'examen soit : 3 h et 0,8 \times 60 min = 3h 48 minutes

Partie B:

1.
$$q(t) = e^{-0.15t}$$

$$q(1,5) = e^{-0,15} \times ^{1,5} = 0,80 \text{ cm}^3$$

2 Volume de ce produit le malade éliminé au bout d'une demi-heure :

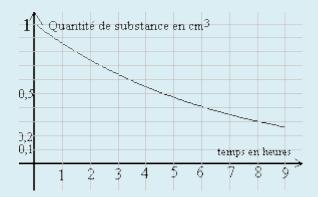
$$V = 1 - q(0.5) = 1 - e^{-0.15} \times ^{0.5} = 0.53 \text{ cm}^3$$

Volume de ce produit le malade éliminé au bout d'une heure :

$$V' = 1 - q(1) = 1 - e-0.15 \times 1 = 0.78 \text{ cm}3$$

3. $q'(t) = -0.15e^{-0.15t} < 0$ donc la fonction q est strictement décroissante sur [0; 9]

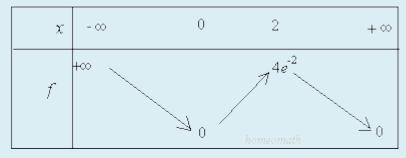
$$q(0) = 1 \text{ et } q(9) = e^{-0.15} \times^9 = 0.26$$
 cm³



probleme8 correction

Partie A

On donne le tableau de variation d'une fonction f dérivable sur \mathbb{R} :



On définit la fonction F sur ℝ par

$$F(x) = \int_{2}^{x} f(t) dt$$

- **1.** Déterminer les variations de la fonction F sur \mathbb{R} ,
- **2.** Montrer que $0 < F(3) < 4e^{-2}$.

Partie B

La fonction f considérée dans la partie A est la fonction définie sur \mathbb{R} par $f(x) = x^2 e^{-x}$.

On appelle g la fonction définie sur \mathbb{R} par $g(x) = e^{-x}$.

On désigne par (C) et (Γ) les courbes représentant respectivement les fonctions f et g dans un repère orthogonal $(O;\vec{i};\vec{j})$

Les courbes sont tracées en annexe.

1. a) Montrer que les variations de la fonction f sont bien celles données dans la partie A.

On ne demande pas de justifier les limites.

b) Étudier les positions relatives des courbes (C) et (Γ) .

- **2.** Soit h la fonction définie sur \mathbb{R} par h(x) = (x² l)e^{-x}.
- a) Montrer que la fonction H définie sur \mathbb{R} par $H(x) = (-x^2 2x 1)e^{-x}$ est une primitive de la fonction h sur \mathbb{R} .
- **b)** Soit un réel α supérieur ou égal à 1.

On considère la partie du plan limitée par les courbes (C) et (Γ) et les droites

d'équations x = 1 et $x = \alpha$.

Déterminer l'aire A(α), exprimée en unité d'aire, de cette partie du plan.

- c) Déterminer la limite de A(α) lorsque α tend vers + ∞
- **3.** On admet que, pour tout réel m strictement supérieur à $4e^{-2}$, la droite d'équation y = m coupe la courbe (C) au point P(x_P ; m) et la courbe (T) au point Q(x_O ; m).

L'objectif de cette question est de montrer qu'il existe une seule valeur de x_P appartenant à l'intervalle $]-\infty$,-] telle que la distance PQ soit égale à 1.

a) Faire apparaître approximativement sur le graphique (proposé en annexe, page 7)

les points P et Q tels que $x_P \in]-\infty,-1]$ et PQ = 1.

- **b)** Exprimer la distance PQ en fonction de x_P et de x_Q . Justifier l'égalité $f(x_P)=g(x_Q)$.
- c) Déterminer la valeur de x_P telle que PQ = 1.

Probleme9 correction

Partie A: Résolution d'une équation différentielle.

On considère l'équation différentielle (1) : $y' + y = 2e^{-x}$, dans laquelle y désigne une fonction inconnue de la variable x, dérivable sur l'ensemble \mathbb{R} des nombres réels.

- **1.** Résoudre l'équation différentielle (2) : y' + y = 0
- **2.** Soit la fonction h définie sur \mathbb{R} par $h(x) = 2xe^{-x}$. Vérifier que h est solution de l'équation (1).
- **3.** On admet que toute solution de (1) s'écrit sous la forme g + h, où g désigne une solution de l'équation (2).
- a. Déterminer l'ensemble des solutions de l'équation (1).
- **b.** Déterminer la solution f de l'équation (1) vérifiant la condition initiale f(0) = -1

Partie B: Etude d'une fonction exponentielle.

On note f la fonction définie pour tout réel x par : $f(x) = (2x - 1)e^{-x}$. On note C sa courbe représentative dans un repère orthonormé $(C; \vec{i}; \vec{j})$. Unités graphiques : 1 cm en abscisses et 2 cm en ordonnées.

- 1. Etude des limites.
- **a.** Déterminer la limite de f en ∞
- **b.** En écrivant , pour tout réel x , $f(x) = 2xe^{-x} e^{-x}$. déterminer la limite de f en + ∞ .

Quelle conséquence graphique peut-on en tirer pour la courbe C?

- **2.** Etude des variations de *f*.
- **a.** Calculer la fonction dérivée f' de la fonction f, puis démontrer que, pour tout réel x, f'(x) est du signe de (-2x + 3).
- **b.** Dresser le tableau de variation de la fonction *f*.
- 3. Représentations graphique
- **a.** Déterminer l'abscisse du point d'intersection de la courbe C avec l'axe des abscisses.
- $\boldsymbol{b}.$ Déterminer une équation de chacune des tangentes (T) et (T ') à la courbe C aux points

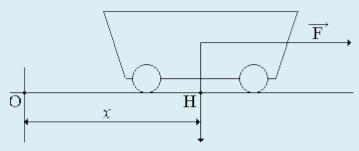
d' abscisses 3/2 et 1/2.

c. Tracer (T), (T ') et la courbe C dans le repère $(O; \vec{i}; \vec{j})$.

Partie C . Détermination d'une primitive

- **1.** Vérifier que, pour tout réel x, $f(x) = -f'(x) + 2e^{-x}$.
- **2.** En déduire une primitive de la fonction f sur $\mathbb R$

Probleme10 correction



Un chariot de masse 200 kg se déplace sur une voie rectiligne et horizontale. Il est soumis à une force d'entraı̂nement constante \overrightarrow{F} de valeur 50 N. Les forces de frottement sont proportionnelles à la vitesse et de sens contraire ; le coefficient de proportionnalité a pour valeur absolue 25 N.m⁻¹.s⁻¹.

La position du chariot est repérée par la distance x, en mètres, du point H à l'origine O du repère en fonction du temps t, exprimé en secondes. On prendra t dans l'intervalle $[0; +\infty]$.

Les lois de Newton conduisent à l'équation différentielle du mouvement (E) 25 x' + 200x'' = 50, où :

x' est la dérivé de x par rapport au temps t,

x" est la dérivée seconde de x par rapport au temps t.

1) On note v(t) la vitesse du chariot au temps t; on rappelle que v(t) = x'(t). Prouver que x est solution de (E) si et seulement si x' est solution de l'équation différentielle (F)

$$v' = \frac{-1}{8}v + \frac{1}{4}$$

Résoudre l'équation différentielle (F).

- 2) On suppose que, à l'instant t = 0, on a : x(0) = 0 et x'(0) = 0.
- a) Calculer, pour tout nombre réel t positif, x'(t)
- **b)** En déduire que l'on a, pour tout nombre réel t positif, $x(t) = 2t 16 + 16e^{-t/8}$.
- 3) Calculer

$$V = \lim_{t \to +\infty} v(t)$$

Pour quelles valeurs de *t* la vitesse du chariot est-elle inférieure où égale à 90 % de sa valeur limite V ?

4) Quelle est la distance parcourue par le chariot au bout de 30 secondes ? On exprimera cette distance en mètres, au décimètre **près**.

probleme11 correction

Le plan complexe est rapporté à un repère orthonormé direct $(\bigcirc; \overrightarrow{u}; \overrightarrow{v})$.

Toutes les courbes demandées seront représentées sur un même graphique

(unité graphique : 2cm).

A. ÉTUDE D' UNE FONCTION f

On définit la fonction f sur
$$f(x) = \ln \left(\sqrt{1+x} - 1 \right)$$
]0; + ∞ [par

- 1. Calculer les <u>limites</u> de f en 0 et en + ∞.
- 2. Étudier le sens de variation de f sur]0; +∞[.
- 3. Soit ${\cal C}$ la courbe représentative de f dans $({\tt O}\,;\,ec{\tt u}\,;\,ec{\tt v})$ et A le point de ${\cal C}$

d'abscisse 3.

Calculer l'ordonnée de $\underline{\mathbf{A}}$. Soit \mathbf{B} le point de \mathbf{C} d'abscisse 5/4, \mathbf{P} le projeté orthogonal de \mathbf{B} sur l'axe $(\mathcal{O}; \vec{u})$ et \mathbf{H} le projeté orthogonal de \mathbf{B} sur l'axe $(\mathcal{O}; \vec{v})$.

Déterminer les valeurs exactes des coordonnées des points \underline{B} , \underline{P} et \underline{H} . placer les points \underline{A} , \underline{B} , \underline{P} et \underline{H} dans le repère $(\bigcirc;\overline{u};\overline{v})$ et représenter la courbe $\underline{\mathcal{C}}$.

B. UTILISATION D' UNE ROTATION

Soit r la rotation ce centre $\frac{\pi}{2}$ O et d'angle

A tout point M du plan d'affixe z, la rotation r associe le point M' d'affixe z'.

1. a. Donner <u>z' en fonction de z</u>.

On note z = x + iy et z' = x' + iy' (x, y, x', y' réels) <u>exprimer</u> x' et y' en fonction de x et y, puis exprimer x et y en fonction de x' et y'.

- b. Déterminer les <u>coordonnées</u> des points A', B' et P' images respectives des points A, B et P par la rotation r.
- 2. On appelle g la fonction définie sur IR par $g\left(x\right)=e^{-2x}+2e^{-x}$

et $\, \Gamma$ sa courbe représentative dans le repère $(\, ^{\bigcirc}\, ; \, \overrightarrow{u}\, ; \, \overrightarrow{v}\,).$

- a. Montrer que lorsqu'un point M appartient à ${\cal C}$, son image M' par r appartient à Γ . On admet que lorsque le point M décrit ${\cal C}$, le point M' décrit Γ .
- b. Tracer sur le graphe précédent les points A', B', P' et la courbe Γ

(L'étude des variations n'est pas demandée).

C. CALCUL D'INTÉGRALES

On rappelle que l'image d'un domaine plan par une rotation est un domaine de même aire.

- 1. Calculer l'<u>intégrale</u> $\int_0^{\ln 2} g(x) dx$ <u>Interpréter</u> graphiquement cette intégrale.
- 2.a Déterminer, en unités d'aire, l'aire A du <u>domaine</u> plan D limité par les segments [AO], [OH], [HB]

b. On pose I =
$$\int_{5/4}^{3} \ln \left(\sqrt{1+x} - 1 \right) dx$$

Trouver une <u>relation</u> entre A et I puis en déduire la valeur exacte de l'intégrale I.

Probleme12 correction

On considère la fonction f définie sur]0; + ∞ [par :

$$f(x) = \frac{1 + \ln x}{x}$$

et on note C sa courbe représentative dans un repère orthonormal (O, \vec{i}, \vec{j}) (unité graphique : 5 cm)

Partie A: Etude de la fonction f.

1. Etudier les limites de f en 0 et en + ∞ (pour cette dernière on pourra remarquer que :

$$f(x) = \frac{1}{x} + \frac{\ln x}{x}$$

2. a. Montrer que:

$$f'(x) = \frac{-\ln x}{x^2}$$

pour tout x appartenant à]0; + ∞ [

- b. En déduire le sens de variation de f .
- c. Dresser le tableau de variation de f.

Partie B: Etude de quelques points particuliers de C

- **1.** Déterminer l'abscisse x_1 du point d'intersection M_1 de C avec l'axe des abscisses.
- **2.** Soit $x_2 = 1/\sqrt{\varepsilon}$. On note M_2 le point de C d'abscisse x_2 .

- **a.** Déterminer une équation de la tangente \triangle_2 au point M_2 .
- **b.** vérifier que \triangle_2 passe par O.
- **3.** Indiquer l'abscisse x_3 du point M_3 de C tel que la tangente Δ_3 à C en M_3 soit parallèle à l'axe des abscisses.
- 4. Soit f" la fonction dérivée de f' : calculer f"(x) pour

x appartenant à]0; + ∞ [.

Déterminer le réel x4 qui annule f"(x).

On appelle M₄ le point de C d'abscisse x₄.

- **5.** Vérifier que x_1 , x_2 , x_3 , x_4 sont quatre termes consécutifs d'une suite géométrique dont on indiquera la raison.
- **6.** Placer les points M_1 , M_2 , M_3 , M_4 dans le repère (O, \vec{i}, \vec{j})

Construire les tangentes Δ_2 et Δ_3 puis la courbe C.

Partie C: Calcul d'une aire

1. On note g la fonction définie sur]0; + 🕫 [par :

$$g(x) = (\ln x)^2$$

Calculer la dérivée de g. En déduire une primitive de f sur]0 ; + ∞ [,après avoir remarqué que :

$$f(x) = \frac{1}{x} + \frac{\ln x}{x}$$

2. Hachurer le domaine plan limité par la courbe C, l'axe des abscisses et les droites d'équation x = 1/e et x = 2. Calculer la valeur exacte A de l'aire de ce domaine exprimée en cm²

