Exercices sur les suites

EXERCICE1 correction

Ce même distributeur d'accès à Internet décide d'étudier l'évolution du nombre de ses abonnés de 1999 à 2005.

Partie A

Il a relevé dans le tableau ci-dessous l'évolution du nombre de ses abonnés en milieu urbain.

Année	1999	2000	2004	2002	2002	2004	2005
Annee	1000	2000	2001	2002	2005	2004	2000
Rang xi	1	2	3	4	5	6	7
Nombre yi							
d'abonnés							
en millions	0,5	3	6	8,4	12,1	15	18

1. Représenter le nuage de points A_i de coordonnées $(x_i; y_i)$ dans un repère orthogonal d'unités :

1 cm pour une année en abscisse. On graduera l'axe jusqu'à 12.

1 cm pour 1 million d'abonnés en ordonnée. On graduera l'axe jusqu'à 27.

- **2.** Déterminer les coordonnées du point moyen G de ce nuage et le placer sur le graphique.
- **3.** On choisit pour ajustement affine du nuage la droite D passant par G et de coefficient directeur égal à 3.
- a) Montrer que D a pour équation y = 3x 3:
- b) Construire la droite D sur le graphique précédent.
- 4. On suppose que le nombre d'abonnés évolue en suivant cet ajustement.
- **a)** Déterminer par un calcul une estimation des abonnés en 2007 et vérifier la réponse graphiquement par un tracé en pointillés.
- **b)** Déterminer par un calcul à partir de quelle année le nombre d'abonnés dépassera 32 millions.

Partie B

Après une étude, le distributeur constate que le nombre d'abonnés en milieu rural correspond à une suite géométrique dont le premier terme, correspondant à l'année 1999, est u_1 = 9000 et la raison est q = 1,8 (on désigne par un le nombre d'abonnés l'année de rang n).

- **1. a)** Vérifier qu'en 2000, le nombre d'abonnés est u_2 = 16 200.
- **b)** Calculer u_3 et u_4 . On arrondira à l'entier le plus proche, si nécessaire.

- c) Exprimer u_n en fonction de n.
- **2.** Déterminer à l'aide de la calculatrice à partir de quelle année le nombre d'abonnés dépassera 32 millions ? On indiquera la méthode utilisée.
- **3.** En utilisant la partie A et la partie B, déterminer dans quel milieu (rural ou urbain) les 32 millions d'abonnés seront dépassés en premier.

EXERCICE2 correction

Le plan est muni d'un repère orthonormé $(\mathcal{O}; \vec{u}; \vec{v})$.

On s'intéresse aux fonctions f dérivables sur $[0, + \infty]$ (vérifiant les conditions .

- (1): pour tout réel x appartenant à $[0, +\infty [f'(x) = 4 (f(x))_2]$
- (2): f(0) = 0

On admet qu'il existe une unique fonction f vérifiant simultanément (1) et (2).

Les deux parties peuvent être traitées de manière indépendante.

L'annexe, sera complétée et remise avec la copie à la fin de l'épreuve.

Partie A. Étude d'une suite

Afin d'obtenir une approximation de la courbe représentative de la fonction f on utilise la méthode itérative d'Euler avec un pas égal à 0,2. On obtient ainsi une suite de points notés (M_n) , d'abscisse x_n et d'ordonnée y_n telles que :

 $x_0 = 0$ et pour tout entier naturel n, $x_{n+1} = x_n + 0.2$

 $y_0 = 0$ et pour tout entier naturel n, $y_{n+1} = -0.2y_n^2 + y_n + 0.8$.

- **1. a)** Les coordonnées des premiers points sont consignées dans le tableau de l'annexe. Compléter ce tableau. On donnera les résultats à 10^{-4} près.
- **b)** Placer, sur le graphique donné en annexe, les points M_n pour n entier naturel inférieur ou égal à 7.
- c) D'après ce graphique, que peut-on conjecturer sur le sens de variation de la suite (y_n) et sur sa convergence ?
- **2. a)** Pour x réel, on pose $p(x) = -0.2 x^2 + x + 0.8$.

Montrer que si $x \in [0; 2]$ alors $p(x) \in [0; 2]$.

- **b)** Montrer que pour tout entier naturel n, $0 \le y_n \le 2$.
- c) Étudier le sens de variation de la suite (y_n) .
- **d)** La suite (y_n) est-elle convergente ?

Partie B. Étude d'une fonction

Soit g la fonction définie sur [0, + ∞ [par

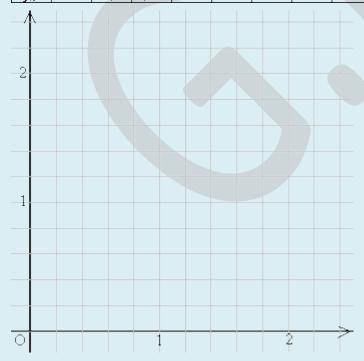
$$g(x) = 2 \frac{e^{4x} - 1}{e^{4x} + 1}$$

et (C_g) sa courbe représentative.

- 1. Montrer que la fonction g vérifie les conditions (1) et (2).
- **2. a)** Montrer que (C_g) admet une asymptote \triangle dont on donnera une équation.
- **b)** Étudier les variations de g sur $[0, +\infty[$.
- **3.** Déterminer l'abscisse a du point d'intersection de \triangle et de la tangente à (Cg) à l'origine.
- **4.** Tracer, dans le repère de l'annexe, la courbe (C_g) et les éléments mis en évidence dans les questions précédentes de cette partie B

Annexe

n	0	1	2	3	4	5	6	7
\boldsymbol{x}_n	0	0,2	0,4					
V n	0	8,0	1,472					



EXERCICE3 correction

Partie A: étude d'une fonction

Soit f la fonction définie sur l'intervalle $[0;+\infty[\operatorname{par} f(x)=x\ln(x+1).$ Sa courbe représentative (C) dans un repère orthogonal $(\mathcal{O};\vec{i};\vec{j})$ est donnée en annexe,

- **1. a)** Montrer que la fonction f est strictement croissante sur l'intervalle [0; $+ \infty$ [.
- b) L'axe des abscisses est-il tangent à la courbe (C) au point O?
- 2. On pose

$$I = \int_0^1 \frac{x^2}{x+1} \, dx$$

a) Déterminer trois réels a, b et c tels que, pour tout $x \neq -1$,

$$\frac{x^2}{x+1} = ax + b + \frac{c}{x+1}$$

- b) Calculer I.
- 3. A l'aide d'une intégration par parties et du résultat obtenu à la question
- 2, calculer, en unités d'aires, l'aire A de la partie du plan limitée par la courbe (C) et les droites d'équations

$$x = 0, x = 1 \text{ et } y = 0.$$

4. Montrer que l'équation f(x) = 0.25 admet une seule solution sur l'intervalle [0;1].

On note α cette solution. Donner un encadrement de α d'amplitude 10⁻².

Partie B: étude d'une suite

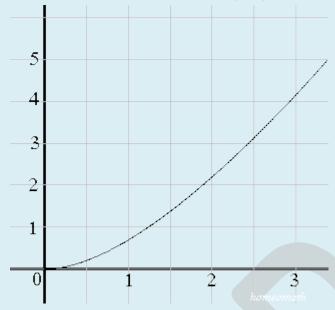
La suite (u_n) est définie sur $\mathbb N$ par

$$u_n = \int_0^1 x^n \ln(x+1) dx$$

- **1.** Déterminer le sens de variation de la suite (u_n) La suite (u_n) converge-t-elle ?
- 2. Démontrer que pour tout entier naturel n non nul,

$$0 \le u_n \le \frac{\ln 2}{n+1}$$

En déduire la limite de la suite (u_n).



EXERCICE4 correction

Un globe-trotter a parié de parcourir 5 000 km à pied.

Il peut, frais et dispos, parcourir 50 km en une journée, mais chaque jour la fatigue s'accumule et donc sa performance diminue de 1 % tous les jours. On notera d_n la distance parcourue durant le n-ième jour.

- 1) Calculer les distances d_1 , d_2 , d_3 , parcourues durant les trois premiers jours.
- 2) Expliquer pourquoi $d_{n+1} = 0.99d_n$ En déduire la nature de la suite (d_n) et l'expression de d_n en fonction de n.
- **3) a)** Calculer, en fonction de n, le nombre total L_n de kilomètres parcourus au bout de n jours

$$(L_n = d_1 + d_2 + ... + d_n)$$

- **b)** En déduire la limite de L_n lorsque n tend vers $+\infty$. Le globe-trotter peut-t-il gagner ?
- **4)** À l'aide de la calculatrice, déterminer le nombre minimal de jours N qui lui seraient nécessaires pour parcourir 4 999 km.

On rappelle que:

La somme S des n premiers termes d'une suite arithmétique (u_n) de raison r est :

$$S = u_1 + u_2 + \dots + u_n = n \frac{u_1 + u_n}{2}$$

La somme S' des n premiers termes d'une suite géométrique (v_n) de raison $q (q \neq 1)$ est

$$S' = v_1 + v_2 + ... + v_n = v_1 \frac{1 - q^n}{1 - q}$$

EXERCICE5 correction

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + 2n + 3 \end{cases}$$

pour tout entier naturel *n*.

- 1) Etudier la monotonie de la suite (u_n) .
- 2) a) Démontrer que pour tout entier naturel n, $u_n > n^2$.
- **2) b)** Quelle est la limite de la suite (u_n) .
- 3) Conjecturer une expression de u_n en fonction de n, puis démontrer la propriété ainsi conjecturée.

EXERCICE6 correction

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par u_n = 2n 1
 - a) Montrer que $\binom{\mathcal{U}_n}{n \in \mathbb{N}}$ est une suite arithmétique dont on précisera le premier terme u_0 et la raison r.
 - b) Calculer en fonction de n, la somme :

$$S_n = u_0 + u_1 + \dots + u_n$$

- 2. Soit $(v_n)_{n \in \mathbb{N}}$ la suite définie par $v_n = e^{u_n}$
- a) Montrer que la suite $\binom{v_n}{n \in \mathbb{N}}$ est une suite géométrique pour laquelle on précisera le premier terme v_0 et la raison q.
- b) Calculer $P_n = v_0 \times v_1 \times \times v_n$ en fonction de n

EXERCICE7 correction

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 la suite définie par $u_n=f(n)=4e^{-\frac{1}{2}n}$

- 1.Démontrer que $\binom{\mathcal{U}_n}{n \in \mathbb{N}}$ est une suite géométrique dont on précisera le premier terme \mathbf{u}_0 et la raison.
- 2. Soit n un nombre entier naturel.

On pose:

$$S_n = 4(u_0 + u_1 + \dots + u_n)$$
 et $T_n = 4(u_1 + u_2 + \dots + u_{n+1})$

Exprimer S_n et T_n en fonction de n.

3. Déterminer les limites S et T de S_n et T_n lorsque n tend vers $+\infty$.

