Variations d'une fonction

Définitions

La fonction f est :

- **croissante** sur l'intervalle I : si pour tous réels x_1 et x_2 appartenant à I tels que $x_1 \le x_2$ on a $f(x_1) \le f(x_2)$
- strictement croissante sur l'intervalle I : si pour tous réels x_1 et x_2 appartenant à I tels que $x_1 < x_2$ on a $f(x_1) < f(x_2)$
- **décroissante** sur l'intervalle I : si pour tous réels x_1 et x_2 appartenant à I tels que $x_1 \le x_2$ on a $f(x_1) \ge f(x_2)$
- strictement décroissante sur l'intervalle I : si pour tous réels x_1 et x_2 appartenant à I tels que $x_1 < x_2$ on a $f(x_1) > f(x_2)$



 $f(x_i)$ $f(x_j)$ \vec{i} x_i x_j x_j

Fonction croissante

Fonction décroissante

Remarque

- Une fonction qui dont le sens de variations ne change pas sur I (c'est à dire qui est soit croissante sur I soit décroissante sur I) est dite **monotone** sur I .
- Une fonction constante ($x \mapsto k$ où k est un réel fixé) est à la fois croissante et décroissante mais n'est ni strictement croissante, ni strictement décroissante.

Propriété

Une fonction affine $f: x \mapsto ax + b$ est croissante si son coefficient directeur a est positif ou nul, et décroissante si son coefficient directeur est négatif ou nul.

Remarque

Si le coefficient directeur d'une fonction affine est nul la fonction est constante.

Propriété

- La fonction "carré" $f:x\mapsto x^2$ est décroissante sur $]-\infty;0]$, et croissante sur $[0;+\infty[$
- La fonction "inverse" $f: x \mapsto \frac{1}{x}$ est décroissante sur $]-\infty; 0[$, et décroissante sur $]0; +\infty[$

Attention

On ne peut pas dire que la fonction "inverse" est décroissante sur $]-\infty;0$ [\cup] $0;+\infty$ [car :

-] $-\infty;0$ [U]05 $+\infty$ [n'est pas un intervalle (mais est une réunion d'intervalles)
- -1 < 1 et pourtant $\frac{1}{-1}$ n'est pas supérieur à $\frac{1}{1}$

Théorème

La somme de deux fonctions croissantes (resp. décroissantes) sur I est croissante (resp. décroissante) sur I .

Exemple

Par exemple la fonction $x\mapsto x^2+x-5$ est croissante sur $[0;+\infty[$ comme somme de la fonction "carré" et d'une fonction affine de coefficient directeur positif. Par contre, ce théorème ne permet pas de conclure sur $]-\infty;0]$

Remarque

Une fonction constante étant à la fois croissante et décroissante, ce théorème prouve que la fonction $x \mapsto f(x) + k$ (où k est un réel) est croissante si f est croissante et décroissante si f est décroissante.

Théorème

- Si k > 0, la fonction kf a le **même** sens de variations que la fonction f sur tout intervalle I
- Si $\,k < 0$, la fonction $\,^k f\,$ a le sens de variations **inverse** de la fonction $\,^f\,$ sur tout intervalle $\,I\,$