QCM(complexe)

EXERCICE

Pour chaque question, <u>une seule</u> réponse est correcte.

Une réponse juste apporte des points, une réponse fausse enlève des points. L'absence de réponse ("Je ne sais pas") ne rapporte ni n'enlève aucun point. Une note négative est ramenée à zéro.

	On considère dans $\mathbb C$ le nombre $z=(7,2)$	+	<i>i</i>) ² .
(Q0)	z est imaginaire pur	П П	V : Vrai F : Faux N : Je ne sais pas
(Q1)	z est réel strictement positif	0	V : Vrai F : Faux
		0	N : Je ne sais pas
(Q2)	2 = 1	0	V : Vrai F : Faux N : Je ne sais pas
(Q3)	Il existe un unique nombre complexe a tel que $a^2 = z$	0	V : Vrai F : Faux N : Je ne sais pas
(Q4)	Il existe $n \in \mathbb{N}^*$ tel que z^n soit un nombre réel strictement inférieur à -10^5	0	V : Vrai F : Faux N : Je ne sais pas

On considère dans $\mathbb C$ le nombre $z=(1+$			† Réponses et indications
(Q 0)	$oldsymbol{z}$ est imaginaire pur	V:Vra	
		N: Je ne sais pas	
(0)		C V:Vra	
(Q 1)	z est réel strictement posi	N : Je ne sais pas	z = 2i
(Q	z =1	C V: Vra	X La réponse est : F
2)		N: Je ne sais pas	z = 2i
(Q	Il existe un unique nombr	□ V:Vra □ F:Fau	X S'il existe un complexe <i>a</i>
3)	tel que $a^2 = z$	N : Je ne sais pas	alors $b = -\alpha$ est aussi te Il n'y a donc pas unicité
		U V: Vra	
(Q 4)	Il existe $n \in \mathbb{N}^*$ tel que z^n réel strictement inférieur :	□ N:Je	×
		ne sais pas	

Pour chaque question, <u>une seule</u> réponse est correcte. Une réponse juste apporte des points, une réponse fausse enlève des points. L'absence de réponse ("Je ne sais pas") ne rapporte ni n'enlève aucun point. Une note négative est ramenée à zéro.

	Dans le plan muni d'un repère orthonormal on considère les points M d'affixe a et N d'affixe b tels que a et b soient les solutions de l'équation $z^2 - 2z + 3 = 0$.	(0	$(\overrightarrow{u},\overrightarrow{v}),$
(Q0)	$\overrightarrow{OM}.\overrightarrow{ON} = ab$		V : Vrai F : Faux N : Je ne sais
(Q1)	a + b est un nombre réel	_	V : Vrai F : Faux N : Je ne sais
(Q2)	Le milieu de [M,N] est sur l'axe des abscisse	□ □ □ pas	V : Vrai F : Faux N : Je ne sais
(Q3)	La droite (MN) est parallèle à l'axe des ordonnées	0	V : Vrai F : Faux N : Je ne sais

		pas
(Q4)	M et N appartiennent au cercle de centre O et de rayon 2	V: VraiF: FauxN: Je ne saispas

Dans le plan muni d'un repère orthonorma on considère les points M d'affixe a et N d'affixe b tels que a et b soient les solutions de l'équation $z^2 - 2z + 3 = 0$.

Réponses et indications

(Q 0)	$\overrightarrow{OM}.\overrightarrow{ON} = ab$	V: Vrai F: Faux N: Je ne sais pas	La réponse est : F $a = 1 - \sqrt{2} i ; b = 1$ $\overrightarrow{OM} \cdot \overrightarrow{ON} = 1 \times 1 + (-1)$ $ab = 3$
(Q 1)	a + b est un nombre réel	V: Vrai F: Faux N: Je ne sais pas	La réponse est : V $a+b=2$
(Q 2)	Le milieu de [M,N] est sur l'a	V: Vrai F: Faux N: Je ne sais pas	La réponse est : V $\frac{a+b}{2} = 1$

(Q	La droite (MN) est parallèle	V: Vrai F: Faux N: Je ne sais pas	La réponse est : V
3)	à l'axe des ordonnées		C'est la droite d'équati
(Q	M et N appartiennent au cer	V: Vrai F: Faux N: Je ne sais pas	La réponse est : F
4)	centre O et de rayon 2		OM = ON = √3

Notation:

Pour chaque question, <u>une seule</u> réponse est correcte.

Une réponse juste apporte des points, une réponse fausse enlève des points.

L'absence de réponse ("Je ne sais pas") ne rapporte ni n'enlève aucun point.

Une note négative est ramenée à zéro.

Soient les trois nombres complexes : $z_1 = 1 - i\sqrt{3} , z_2 = 4 + 4i , z_3 = (1 - i)^2$ $\begin{bmatrix} & & & & & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$

(Q2)	$z_1.z_2 = 4\sqrt{2} e^{-i\frac{5\pi}{12}}$	V: VraiF: FauxN: Je ne sais pas
(Q3)	$\frac{z_3}{z_1} = e^{i\frac{\pi}{6}}$	□ V: Vrai□ F: Faux□ N: Je ne sais pas
(Q4)	$z_2.z_3 = 8\sqrt{2} e^{-i\frac{\pi}{4}}$	C V: VraiC F: FauxE N: Je ne sais pas

	pient les trois nom $= 1 - i\sqrt{3}$, $z_2 =$	Violentia,	Réponses et indications
(Q 0)	$z_1.z_3=4e^{-i\frac{\pi}{6}}$	□ V: Vrai□ F: Faux□ N: Je ne sais pas	La réponse est : F $z_1 = 2e^{-i\frac{\pi}{3}} ; z_3 = -2i = 2e^{-i\frac{\pi}{3}}$ et on sait que : $re^{i\theta} \times r'e^{i\theta'} = r$
(Q 1)	$\frac{z_2}{z_3} = 2\sqrt{2} e^{i\frac{3\pi}{4}}$	□ V:Vrai □ F:Faux	La réponse est : V

		☑ N:Je ne sais pas	$z_2 = 4\sqrt{2}e^{i\frac{\pi}{4}}$; $z_3 = -2i = 2e$ et on sait que : $\frac{r e^{i\theta}}{r' e^{i\Theta'}} = \frac{r}{r'}e^{i(\Theta-i)}$
(Q 2)	$z_1.z_2 = 4\sqrt{2} e^{-}$	□ V: Vrai□ F: Faux□ N: Je ne sais pas	La réponse est : F $z_1 = 2e^{-i\frac{\pi}{3}} ; z_2 = 4\sqrt{2}e^{i\frac{\pi}{4}}$ et on sait que : $re^{i\theta} \times r'e^{i\theta'} = r$
(Q 3)	$\frac{z_3}{z_1} = e^{i\frac{\pi}{6}}$	V: Vrai F: Faux N: Je ne sais pas	La réponse est : F $z_3 = -2i = 2e^{-i\frac{\pi}{2}}; z_1 = 2e^{-i\frac{\pi}{2}}$ et on sait que : $\frac{r}{r'}\frac{e^{i\theta}}{e^{i\theta'}} = \frac{r}{r'}e^{i(\theta-\theta)}$
(Q 4)	$z_2.z_3 = 8\sqrt{2} e^{-1}$	C V: VraiC F: FauxM: Je ne sais pas	La réponse est : V $z_2 = 4\sqrt{2}e^{i\frac{\pi}{4}} \; ; \; z_3 = -2i = 2e^{-i\frac{\pi}{4}}$ et on sait que : $re^{i\theta} \times r'e^{i\theta'} = re^{i\theta}$

Pour chaque question, une seule réponse est correcte.

Une réponse juste apporte des points, une réponse fausse enlève des points.

L'absence de réponse ("Je ne sais pas") ne rapporte ni n'enlève aucun point.

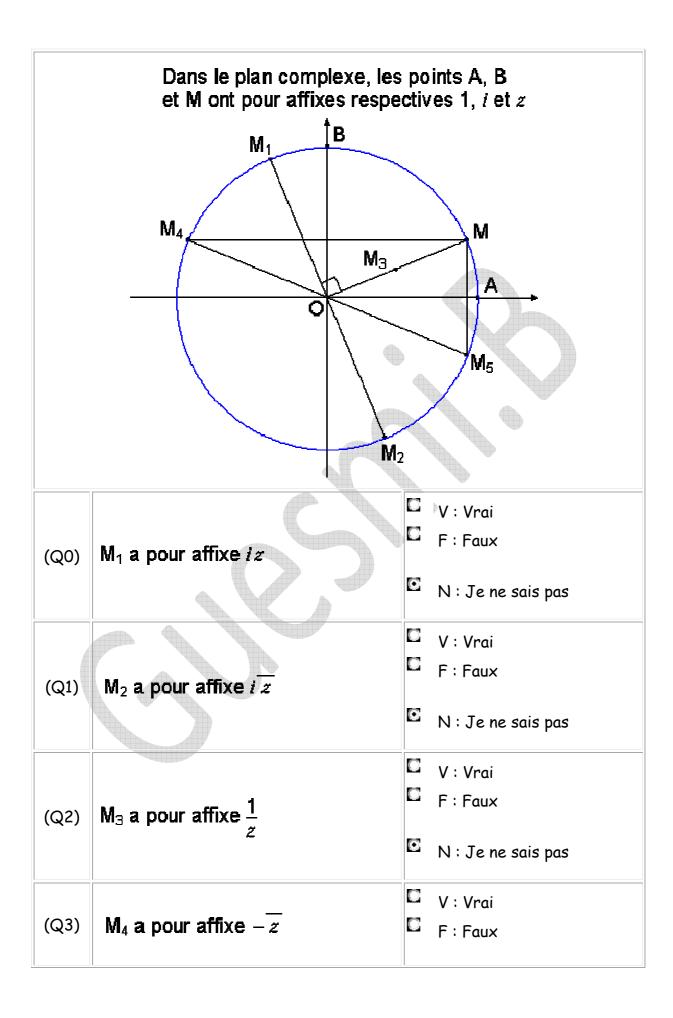
Une note négative est ramenée à zéro.

On considère les nombres complexes

$$a = 1 + i\sqrt{3}$$
 et $b = 1 - i$.

(Q0)	$Arg\ a = \frac{\pi}{3}$		V : Vrai F : Faux N : Je ne sais pas
(Q1)	Il existe au moins un p de lN*tel que a^p soit réel		V : Vrai F : Faux N : Je ne sais pas
(Q2)	Il existe au moins un q de IN* tel que a^q soit imaginaire pur		V : Vrai F : Faux N : Je ne sais pas
(Q3)	Il existe au moins un n de \mathbb{N}^n tel que $b^n = 1$	<u> </u>	V : Vrai F : Faux N : Je ne sais pas
(Q4)	Il existe au moins un m de \mathbb{N}^* tel que a^m et b^m soient réels	0	V : Vrai F : Faux N : Je ne sais pas

On considère les nombres complexes $a = 1 + i \sqrt{3}$ et $b = 1 - i$.	Réponses et indications


(Q 0)	$Arg\ a = \frac{\pi}{3}$	V: VraiF: FauxN: Je ne sais pas	La réponse est : V $a = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2\left(\cos \frac{1}{2}\right)$
(Q 1)	ll existe au moins un p de a^p soit réel	□ V: Vrai□ F: Faux□ N: Je nesais pas	La réponse est : V $Arg \ a = \frac{\pi}{3}$ $donc \ Arg \ a^3 = \pi$
(Q 2)	Il existe au moins un q de a^q soit imaginaire pur	□ V: Vrai□ F: Faux□ N: Je ne sais pas	La réponse est : F a^q a pour argument $q \frac{\pi}{3}$
(Q 3)	Il existe au moins un n de $b^n = 1$	C V: Vrai C F: Faux N: Je ne sais pas	La réponse est : F b a pour module $\sqrt{2}$ b^n a pour module $(\sqrt{2})^n$
(Q 4)	ll existe au moins un m d a^m et b^m soient réels	□ V: Vrai□ F: Faux□ N: Je nesais pas	La réponse est : V Déterminer les arguments a^{12} et b^{12}

Pour chaque question, <u>une seule</u> réponse est correcte.

Une réponse juste apporte des points, une réponse fausse enlève des points.

L'absence de réponse ("Je ne sais pas") ne rapporte ni n'enlève aucun point.

Une note négative est ramenée à zéro.

		N: Je ne sais pas
(Q4)	M_5 a pour affixe $\frac{1}{a}$	□ V:Vrai □ F:Faux
(Q +)	z	N : Je ne sais pas

(Q 1)	M₂ a pour affixe	V: Vrai F: Faux N: Je ne sais pas	La réponse est : F M_2 est le symétrique de M_1 par π son affixe est $-iz$
(Q 2)	M₃ a pour affixe	V: Vrai F: Faux N: Je ne sais pas	La réponse est : F $ z = 1$, donc $\frac{1}{z} = \overline{z}$ Le point d'affixe $\frac{1}{z}$ est donc M_5
(Q 3)	M₄ a pour affixe	V: Vrai F: Faux N: Je ne sais pas	La réponse est : V M_4 est le symétrique de M_5 par r et M_5 a pour affixe \overline{z}
(Q 4)	M₅ a pour affixe	V: Vrai F: Faux N: Je ne sais pas	La réponse est : V M étant sur le cercle de centre C rayon 1, on a $ z = 1$ et donc

Pour chaque question, <u>une seule</u> réponse est correcte.

Une réponse juste apporte des points, une réponse fausse enlève des points.

L'absence de réponse ("Je ne sais pas") ne rapporte ni n'enlève aucun point.

Une note négative est ramenée à zéro.

 z_1 et z_2 sont les solutions complexes de l'équation : $z^2 - 2z + 5 = 0$. M₁ et M₂ les points du plan complexe ayant respectivement pour affixe z_1 et z_2 . O est le point d'affixe nulle. V: Vrai F: Faux $(Q0) Re(z_1) = Re(z_2)$ N : Je ne sais pas V : Vrai F: Faux (Q1) OM₁M₂ est un triangle équilatéral. 0 N : Je ne sais pas V: Vrai F : Faux L'axe réel Ox est la médiatrice (Q2) du segment [M₁M₂] 0 N: Je ne sais pas □ V:Vrai F: Faux (Q3) Le milieu de $[M_1M_2]$ a pour affixe 2iN : Je ne sais pas V: Vrai F : Faux M₁ et M₂ sont sur le cercle de (Q4) centre O et de rayon 5 N: Je ne sais pas

l'é M re	et z_2 sont les solutions co quation : $z^2 - 2z + 5 = 0$ 1 et M_2 les points du plan spectivement pour affixe est le point d'affixe nulle.	Réponses et indications	
(Q 0)	$Re(z_1) = Re(z_2)$	V: Vrai F: Faux N: Je ne sais pas	La réponse est : V L'équation ayant des coef z_1 et z_2 sont conjugués
(Q 1)	OM₁M₂ est un triangle éc	C V: Vrai C F: Faux C N: Je ne sais pas	La réponse est : F $z_1 = 1 - 2i$ $z_2 = 1 + 2i$ $OM_1 = z_1 = \sqrt{5}$ $M_1M_2 =$
(Q 2)	L'axe réel Ox est la méd du segment [M ₁ M ₂]	C V: Vrai C F: Faux C N: Je ne sais pas	La réponse est : V L'équation ayant des coef z_1 et z_2 sont conjugués
(Q 3)	Le milieu de [M ₁ M ₂] a po	V: Vrai F: Faux N: Je ne sais pas	La réponse est : F $z_1 = 1 - 2i z_2 = 1 + 2i$ $\frac{z_1 + z_2}{2} = 1$
(Q 4)	M ₁ et M ₂ sont sur le cerc centre O et de rayon 5	V: Vrai F: Faux N: Je ne sais pas	La réponse est : F $z_1 = 1 - 2i$ $z_2 = 1 + 2i$ $OM_1 = z_1 = \sqrt{5}$ et OM_2

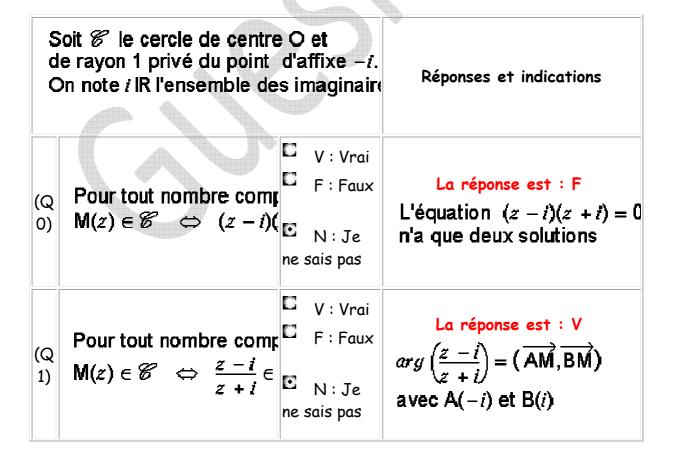
Pour chaque question, <u>une seule</u> réponse est correcte. Une réponse juste apporte des points, une réponse fausse enlève des points. L'absence de réponse ("Je ne sais pas") ne rapporte ni n'enlève aucun point. Une note négative est ramenée à zéro.

	On considère l'équation complexe (E) $z^3 + 6z^2 + 12z + 9 = 0$. On appelle z_1 , z_2 , z_3 les solutions de telles que : $Im(z_1) = 0$, $Im(z_2) > 0$, $Im(z_3) > 0$	(E) (z ₃)	< 0 ,
(Q0)	-3 est solution de l'équation (E)		V : Vrai F : Faux N : Je ne sais pas
(Q1)	L'isobarycentre de M_1 , M_2 , M_3 est le point d'affixe 4		V : Vrai F : Faux N : Je ne sais pas
(Q2)	M ₁ M ₂ M ₃ est un triangle isocèle		V : Vrai F : Faux N : Je ne sais pas
(Q3)	M ₁ M ₂ M ₃ est un triangle rectangle	© ©	V : Vrai F : Faux N : Je ne sais pas
(Q4)	OM ₂ M ₁ M ₃ est un losange		V : Vrai

		F:Faux
	•]	N : Je ne sais pas

On considère l'équation complexe (E) $z^3 + 6z^2 + 12z + 9 = 0$. On appelle z_1 , z_2 , z_3 les solutions de telles que : $Im(z_1) = 0$, $Im(z_2) > 0$, $Im(z_3) > 0$			Réponses et indications
(Q 0)	−3 est solution de l'équ	V: Vrai F: Faux N: Je ne sais pas	La réponse est : V (-3) ³ + 6(-3) ² + 12(-3) + 9
(Q 1)	L'isobarycentre de M ₁ point d'affixe 4	V: Vrai F: Faux N: Je ne sais pas	
(Q 2)	M ₁ M ₂ M ₃ est un triangl	□ V: Vrai□ F: Faux□ N: Jene sais pas	La réponse est : V $z_1 = -3 \; ; \; z_2 = -\frac{3}{2} + \frac{\sqrt{3}}{2}i \; ;$ $z_2 \text{ et } z_3 \text{ sont conjugués, donc}$ $M_2 \text{ et } M_3 \text{ sont symétriques p}$ $M_1 \text{ appartient à } Ox$

(Q 3)		V:Vrai F:Faux N:Je ne sais pas	La réponse est : F $z_{1} = -3 \; ; \; z_{2} = -\frac{3}{2} + \frac{\sqrt{3}}{2} i \; ;$ Constater sur un dessin ou c $ z_{1} - z_{2} ^{2} \; ; \; z_{1} - z_{3} ^{2} \; ; \; z_{2} -$
(Q 4)	OM₂M₁M₃ est un losanç	□ V: Vrai□ F: Faux□ N: Jene sais pas	La réponse est : V $z_1=-3 \; ; \; z_2=-\frac{3}{2}+\frac{\sqrt{3}}{2}i \; ;$ $OM_2M_1M_3 \; est \; un \; parallélogradiagonales sont perpendicular$


Pour chaque question, <u>une seule</u> réponse est correcte.

Une réponse juste apporte des points, une réponse fausse enlève des points. L'absence de réponse ("Je ne sais pas") ne rapporte ni n'enlève aucun point. Une note négative est ramenée à zéro.

Soit \mathscr{C} le cercle de centre O et de rayon 1 privé du point d'affixe -i. On note i IR l'ensemble des imaginaires purs.

	Off flote firt feliaethble dea imagi	nanco paro.
(Q0)	Pour tout nombre complexe z $M(z) \in \mathscr{C} \iff (z - i)(z + i) = 0$	V: Vrai F: Faux N: Je ne sais pas
(Q1)	Pour tout nombre complexe z $M(z) \in \mathscr{C} \iff \frac{z-i}{z+i} \in i \mathbb{R}$	V: Vrai F: Faux N: Je ne sais pas

(Q2)	Pour tout nombre complexe z $M(z) \in \mathscr{C} \iff \frac{z-i}{z+i} \in \mathbb{R}$	V: Vrai F: Faux N: Je ne sais pas
(Q3)	Pour tout nombre complexe z $M(z) \in \mathscr{C} \iff Re[(z-i)(z+i)] = 0$	□ V: Vrai□ F: Faux□ N: Je ne sais pas
(Q4)	Pour tout nombre complexe z $M(z) \in \mathcal{E} \iff \frac{z-1}{z+i} \in i \mathbb{R}$	□ V: Vrai□ F: Faux□ N: Je ne sais pas

V : Vrai La réponse est : F Pour tout nombre comp F: Faux $arg\left(\frac{z-i}{z+i}\right) = (\overrightarrow{AM}, \overrightarrow{BM})$ (Q $\mathsf{M}(z)\in\mathscr{C} \Leftrightarrow \frac{z-i}{z+i}\in$ 2) N: Je avec A(-i) et B(i)ne sais pas V : Vrai La réponse est : F F : FauxPour tout nombre comi (Q Le point d'affixe 1 appartier $M(z) \in \mathscr{C} \Leftrightarrow Re[(z +$ 3) pourtant z = 1 n'est pas solu N: Je ne sais pas V : Vrai Pour tout nombre comp F: Faux (Q $M(z) \in \mathscr{C} \iff \frac{z-1}{z+i} \in$ N: Je ne sais pas

EXERCICE

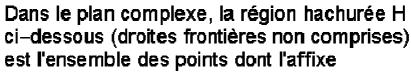
Pour chaque question, <u>une seule</u> réponse est correcte.

Une réponse juste apporte des points, une réponse fausse enlève des points. L'absence de réponse ("Je ne sais pas") ne rapporte ni n'enlève aucun point.

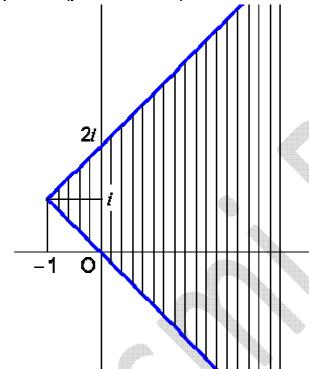
Une note négative est ramenée à zéro.

	On considère le nombre complexe $z = 1 - tan^2\alpha + 2itan\alpha \text{où } \alpha \in \left[-\frac{\pi}{4} \right], 0.$			
	z = 1 - tair a + zitaita.	ou α ∈		
(Q0)	Re(z) > 0	V: Vrai F: Faux N: Je ne sais pas		
(Q1)	$ z = 1 + tan^2 \alpha$	□ V:Vrai □ F:Faux		

		N: Je ne sais pas
		□ V: Vrai
(Q2)	$Argz=\alpha+2k\pi\ (k\in\mathbb{Z})$	F:Faux
(42)	y = - ss · = (ar c =)	N: Je ne sais pas
		C V:Vrai
(Q3)	$Im(z) = (1 + tan^2 \alpha) sin 2\alpha$	C F: Faux
(43)		N : Je ne sais pas
		C V: Vrai
(Q4)	$Re(z) = (1 + tan^2 \alpha) \cos \alpha$	C F: Faux
		N: Je ne sais pas


On considère le nombre complexe $z = 1 - tan^2\alpha + 2itan\alpha$ où $\alpha \in \left] - \right]$			Réponses et indications
(Q 0)	Re(z) > 0	V: Vrai F: Faux N: Je ne sais pas	La réponse est : V Pour $\alpha \in \left[-\frac{\pi}{4} \right]$; $0 \left[-1 \le ta \right]$
(Q 1)	$ z =1+tan^2\alpha.$	□ V:Vrai □ F:Faux	La réponse est : V $ z = \sqrt{(1 - \tan^2 \alpha)^2 + 4 \tan^2 \alpha}$

		N: Je ne sais pas	
(Q 2)	$Argz = \alpha + 2k\pi (k$	□ V: Vrai□ F: Faux□ N: Je nesais pas	La réponse est : F $Argz = 2\alpha + 2k\pi \ (k \in \mathbb{Z})$
(Q 3)	$Im(z) = (1 + tan^2 \alpha)$	V: Vrai F: Faux N: Je ne sais pas	La réponse est : V $(1 + tan^{2}\alpha) sin2\alpha = \frac{1}{cos^{2}\alpha} (2 sin2\alpha)$
(Q 4)	$Re(z) = (1 + tan^2 \alpha)$	V: Vrai F: Faux N: Je ne sais pas	La réponse est : F $Re(z) = 1 - tan^{2}\alpha$ $(1 + tan^{2}\alpha)\cos\alpha = \frac{1}{\cos\alpha}$


Pour chaque question, <u>une seule</u> réponse est correcte.

Une réponse juste apporte des points, une réponse fausse enlève des points. L'absence de réponse ("Je ne sais pas") ne rapporte ni n'enlève aucun point.

Une note négative est ramenée à zéro.

$$z = \rho e^{i\theta}$$
 ($\rho > 0$, $\theta \in \mathbb{R}$) vérifie :

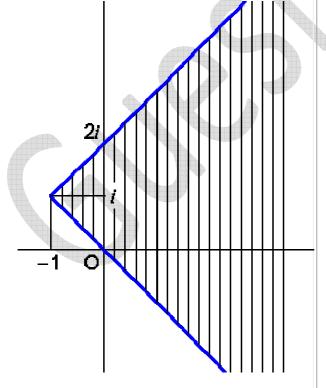
(Q0)
$$\rho \cos \theta > -1$$
 et $-\frac{\pi}{4} < \theta < \frac{\pi}{4}$

- 🔽 V:Vrai
- F:Faux
- 🖸 N : Je ne sais pas

(Q1)
$$z + 1 = i + \lambda e^{i\theta}$$
 avec $\lambda > 0$

- U V: Vrai
 - F:Faux
- N: Je ne sais pas

$$|_{(Q2)}$$
 $\rho \geqslant \sqrt{2}$ et $-\frac{\pi}{4} < \theta < \frac{\pi}{4}$


- □ V:Vrai
 - F : Faux
- 🔼 N : Je ne sais pas

(Q3)
$$|z + 1 - i| > 1$$

			F : Faux
		0	N : Je ne sais pas
			V : Vrai
(Q4)	$\rho(\sin\theta - \cos\theta) \le 2 \text{ et } -\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$		F:Faux
	4 4	C	N : Je ne sais pas

Dans le plan complexe, la région hach ci-dessous (droites frontières non com est l'ensemble des points dont l'affixe

$$z = \rho e^{i\theta}$$
 ($\rho > 0$, $\theta \in \mathbb{R}$) vérifie :

Réponses et indications

(Q 0)

$$\rho \cos \theta \ge -1$$
 et $-\frac{\pi}{4} \le \frac{\Box}{\Box}$ V: Vrai

U V:Vrai

La réponse est : F

			N : Je ne 3 pas	On peut trouver des points dont l'affixe a un argument Le point d'affixe <i>i</i> par exem
(Q 1)	$z + 1 = i + \lambda e^{i\Theta}$ avec λ	0	V : Vrai F : Faux N : Je ne ; pas	La réponse est : F $z + 1 = i + \lambda e^{i\theta} \text{ avec } \lambda > 0$ équivaut à $z - (-1 + i) = \lambda$ L'ensemble correspondant de centre d'affixe $-1 + i$ et
(Q 2)	$\rho \geqslant \sqrt{2} \text{et} -\frac{\pi}{4} < \theta < \frac{7}{2}$	0	V: Vrai F: Faux N: Je ne pas	La réponse est : F On peut trouver des points dont l'affixe a un module ir Le point d'affixe i par exen
(Q 3)	z + 1 - i > 1	© ©	V : Vrai F : Faux N : Je ne s pas	La réponse est : F Cet ensemble correspond : privé du disque de centre d'afiixe -1 + i et de rayon '
(Q 4)	$\rho(\sin\theta - \cos\theta) < 2 \text{ et } -$	C Sais	V : Vrai F : Faux N : Je ne s pas	La réponse est : V Chacune des conditions cor demi-plan limité par l'une de du dessin