Lycee El Hedi Ben Hsin Jendouba

<u>Devoir de contr</u>ôle n°3

Exercice n°1: (4 points)

Choisie l'unique bonne réponse et sans justification.

- A) Soit P et Q deux polynômes définie par : $P(x) = x^4 3x + 1$ et $Q(x) = -x^3 + x^2 4$
- 1) Le degré du polynômes (P-Q) égal à :
 - a) 3
- b) 4
- c) 7
- 2) Le degré du polynôme P×Q égal à :
- b)4
- B) dans la figure ci contre on a :(AB) $/\!/$ (CD) et OA = 4,

$$OB = 6 ; OC = 2 \text{ et } OD = 3.$$

Soit h 1'homothétie qui transforme A en C et B en D.

- 1) Le centre de h est le point :
 - a) C
- b) D
- c)O
- 2) le rapport de h égal à ;
 - a) -2
- b) $-\frac{1}{2}$ c) $\frac{1}{2}$

Exercice n°2: (7 points)

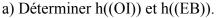
- 1) Soit les polynômes définie par $P(x) = x^3 6x^2 + 11x 6$ et $Q(x) = x^2 + x 6$.
 - a) Montrer que 2 est une racine de **P**.
 - b) Factoriser P(x).
 - c) Résoudre dans IR l'équation P(x) = 0.
- 2) Soit la fonction rationnelle définie par $f(x) = \frac{P(x)}{O(x)}$.
 - a) Déterminer le domaine de définition de f.
 - b) Simplifier l'expression de f(x).
 - c) Résoudre dans IR l'inéquation : $f(x) \ge 0$.

Exercice n°3: (9 points)

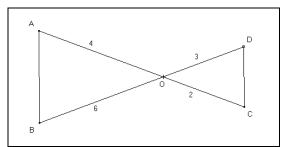
Soit ABI un triangle rectangle et isocèle en I et soit O le milieu de [AB] et (C) le cercle de centre O circonscrit au triangle ABI. Soit h l'homothétie de centre I et de rapport -2.

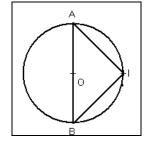
Recopier et compléter le schéma.

- 1) a) Construire les points A' et B' image respectifs de A et B par h.
 - b) Montrer que le triangle A'B'I est isocèle et rectangle en I.
- 2) La droite (IO) coupe (A'B') en O'.
 - a) Montrer que O' est le milieu de [A'B'].
 - b) Caractériser et construire le cercle (C') image du cercle (C) par h.
- 3) La droite (OI) recoupe le cercle (C) en E. La droite passant par B' et parallèle à (BE) coupe (OI) en E'.



b) En déduire que h(E) = E' et que E' appartient au cercle (C').





Correction (proposee par Guesmi.B)

EXERCICE1

- A)1) b 2)c
- B)1) c 2)a

EXERCICE2

- 1)a) on a: p(2)=0 donc 2 est une racine de p(x)=0
- b) on a :2 est une racine de p(x)=0 donc $p(x)=(x-2)(ax^2+bx+c)$

en identifiant on a $p(x)=(x-2)(x^2-4x+3)$

p(x)=0 donc x=2 ou $x^2-4x+3=0$ on remarque que a+b+c=0 donc x=1 est une racine

l'autre racine est c/a=3

- 2) a) f(x) n'existe que si $x^2+x-6\neq 0$
- $X^2+x-6=0$; $\Delta = 25$ donc x=2 ou x=-3

Donc le domaine d'existance est IR-{2,-3}

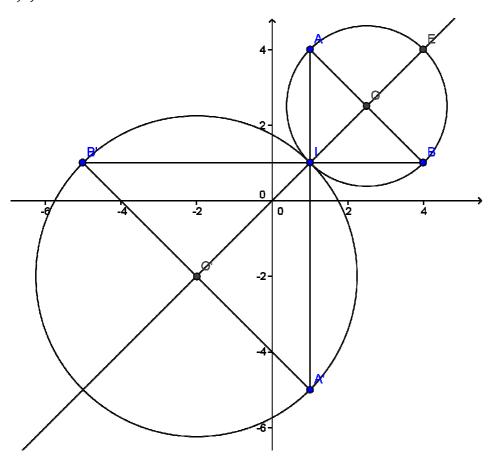
b)
$$f(x) = \frac{(x-2)(x^2-4x+3)}{(x-2)(x+3)} = \frac{x^2-4x+3}{x+3}$$

c)tableau de signe

X	- ∞ ·	-3	1		3	+∞
$x^2 - 4x + 3$	+	+	0	-	0	+
X+3	-	+		+		+
	1					
f(x)	-	+	0	-	þ	+
donc $S_{IR} =]-3,1] \cup [3,+\infty[$						

EXERCICE3

1)a)



 $h(A)=A' \Leftrightarrow \overrightarrow{IA'}=-2\overrightarrow{IA} \ de \ meme \ h(B)=B'eq \ \overrightarrow{IB'}=-2\overrightarrow{IB}$

b)IA=IB donc IA'=2IA et IB'=2IB d'où IA'=IB' d'où le resultat

de plus (IA) \perp (IB) donc (IA') \perp (IB) puisque toute homothetie conserve l'orthogonalite

2)h conserve les milieux alors puisque h(A)=A' et h(B)=B' donc O' est le milieu de [A'B']

b)l'image d'un cercle par une homothetie est un cercle de rayon |k|R

donc l'image de (C) est un cercle (C') de centre h(0)=0' et de $\frac{AB}{2}X2 = AB$