Exercicel: 4pts

Choisir la réponse correcte.

> 1- Soit ABC un triangle de cotés 2cm ; 3cm et 4cm.tel que le rayon de son cercle circonscrit est R=3cm alors sa surface S est :

a) 2

b) $\sqrt{2}$

c) 3

> 2- Soit ABC un triangle tel que : AB=c AC=b et BC=a alors :

 $a) \qquad a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$

b) $a^2=b^2+c^2+2bc \cos \widehat{A}$

c) $a^2=b^2+c^2-2bc \sin \widehat{A}$

 \triangleright 3- Soit: $f(x)=|x| \forall x \in [-1;2]$ alors:

a) fest paire

b) f est impaire

c) f n'est ni paire ni impaire.

> 4- Soit f une fonction impaire sur IR et qui est croissante sur $[0; +\infty[$ alors:

a)f est croissante sur IR.

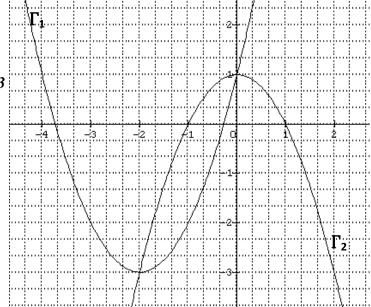
b) f est décroissante sur $]-\infty$; 0].

On donne deux fonctions $f(x) = -x^2 + 1$ et $g(x) = (x+2)^2 - 3$ et deux courbes Γ_1 et Γ_2 comme l'indique la figure si jointe :

- ↓ 1/ pour chacune de ces fonctions donner la courbe correspondante.
- **♣** 2/ Décrire le sens de variation de chacune.
- 4 3/ a-Résoudre graphiquement f(x)=g(x).

b-Retrouver le résultat par le calcul.

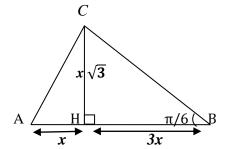
4 4/Résoudre graphiquement l'Inéquation : $(x+2)^2+x^2 \ge 4$



Exercice3: 6pts

On donne la figure suivante

- **↓** 1/ En utilisant la loi de sinus dans le triangle BCH Montrer que BC= $2 x\sqrt{3}$
- ♣ 2/ En utilisant le théorème d'El-Kashi dans le triangle ABC Calculer AC en fonction de x.
- **♣** 3/ Montrer alors que ABC est rectangle en C.



AH=x BH=3x $HC=x\sqrt{3}$

 $B = \frac{\pi}{6}$

CORRECTION(proposée par Guesmi.B)

EXERCICE1

1)A

Justification $S = \frac{abc}{4R}$

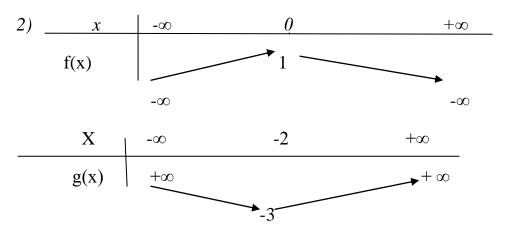
- 2)A (theoreme d'El Kashi)
- *3)C*
- 4)A

EXERCICE2

1)la courbure de (τ_1) est tournée vers les ordonées positives donc

C'est celle de g(x) puisque le coefficient de x^2 est positif

 $Donc C_f = (\tau_2)$



3) a)
$$S_{IR} = \{-2,0\}$$

b)
$$f(x)=g(x)$$

$$x^2+4x+4-3=-x^2+1$$

$$sig \quad x(x+2)=0$$

donc x=0 ou x=-2

4)
$$(x+2)^2-3 \ge -x^2+4-3$$

Donc $g(x) \ge f(x)$

Donc $x \in]-\infty, -2] \cup [0, +\infty[$

EXERCICE3

1)on a:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 avec $a = BC$, $b = AC$ et $c = AB$

Donc
$$\frac{BC}{1} = \frac{x\sqrt{3}}{\frac{1}{2}}$$
 donc $BC = 2x\sqrt{3}$

2) on a :
$$AC^2 = AB^2 + BC^2 - 2AB \cdot BC \cdot \cos \hat{B}$$

Donc
$$AC^2 = (4x)^2 + (2x\sqrt{3})^2 - 2.4x \cdot 2x\sqrt{3}\cos\frac{\pi}{6}$$

Donc
$$AC^2=4x^2$$
 donc $AC=2x$

3) on a :
$$AB^2=16x^2$$
 ; $AC^2=4x^2$ et $BC^2=12x^2$

Donc
$$BC^2+AC^2=AB^2$$

Donc le triangle ABC est rectangle en C

(reciproque de Pythagore)