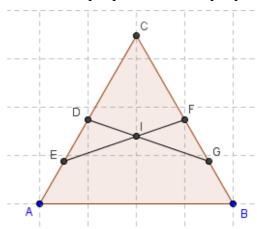
## **Exercice 1**

Répondre par Vrai ou Faux à chacune des cinq questions suivantes. Aucune justification n'est demandée.

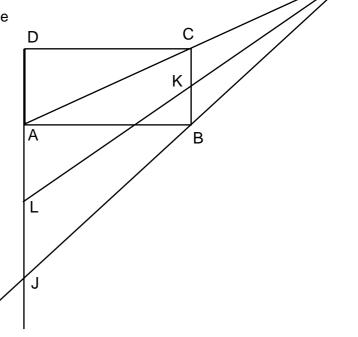

- 1. Les nombres suivants sont trois termes consutifs d'une suite arithmétique : 510 , 621 et 732.
- **2.** Soit  $(U_n)_{n\in\mathbb{N}}$  une suite arithmétique de premier terme  $U_0=5$  et de raison r=-6 alors :

$$U_n = 5 - 6n$$
, pour tout  $n \in \mathbb{N}$ 

- **3.** 2 + 4 + 6 + ... + 2008 + 2010 = 1011030
- **4.** C est l'image de B par l'homothétie de centre A et de rapport  $\frac{2}{5}$  équivaut à  $\overrightarrow{AB} = \frac{2}{5}\overrightarrow{AC}$
- 5. ABC est un triangle équilatéral. D est milieu de [AC], F est milieu de [BC], E milieu de [AD]

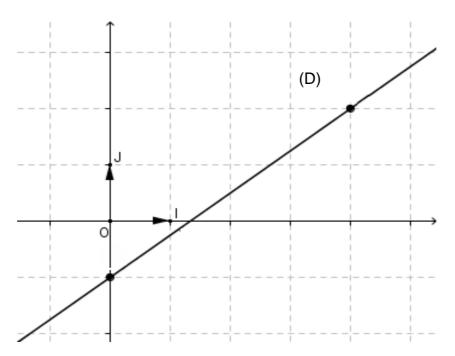
et G milieu de [BF].

Le rapport de l'homothétie de centre I qui envoie D sur G et F sur E est  $\frac{2}{3}$ 




# Exercice 2: (8 points)

Soit ABCD un rectangle, on désigne par I le symétrique de A par rapport à C. La droite (IB) coupe (AD) en J.


On considère l'application f du plan dans le plan qui à tout point M associe le point M' tel que :

- Montrer que f est l'homothétie de centre l et de rapport 2.
- 2. a) Déterminer l'image de la droite (BC) par f .
  - **b)** Montrer que f(B) = J.



- Soit K le milieu du segment [BC]. La droite (IK) coupe (AD) en L.Montrer que L est le milieu de [AJ].
- 4. On suppose que A et C sont fixes et que B varie sur le cercle (σ) de diamètre [AC].
  Déterminer l'ensemble des points J lorsque B varie .

## **Exercice 3**



Dans le graphique ci-dessus, (D) est la droite qui contient les points  $A(n,\,U_n)$ , où  $(U_n)$  est une suite arithmétique de premier terme  $U_0$  et de raison r.

- 1. a) Donner par lecture graphique la valeur de  $\mathsf{U}_0$  et de  $\mathsf{U}_4$ .
  - b) Déterminer alors r.
- 2. Exprimer  $U_n$  en fonction de n.
- 3. Déterminer le trentième terme de la suite  $(U_n)$  .
- **4.** Déterminer n pour que  $U_n = 74$ .

## Correction(proposee par Guesmi.B)

### **EXERCICE1**

1)Vrai

2)Vrai

3)Vrai

4)Faux

5)Faux

### **EXERCICE2**

1) on a 
$$\overrightarrow{MI} + \overrightarrow{IM'} = \overrightarrow{MI} + \overrightarrow{IA} - 2\overrightarrow{MI} - 2\overrightarrow{IC}$$
 or  $\overrightarrow{IA} = 2\overrightarrow{IC}$  donc  $\overrightarrow{IM'} = 2\overrightarrow{IM}$ ;  $\forall M \in P$ 

 $\mathsf{Donc}\, f = h_{(I,2)}$ 

2)a)on a : (AJ)//(BC) et C milieu de [IA] donc B milieu de [IJ]

D'où 
$$h_{(I,2)}(B) = J$$
 et alors  $f(BC) = (AJ)$ 

### **AUTRE METHODE**

1)a)L'image d'une droite par une homothetie est une droite de meme

Direction et puisque h(C)=A alors l'mage de (BC) est une

Droite qui passe par h(C)=A et // à (BC) qui n'est que (AD)

b)puisque  $B \in (BC)$  donc  $h(B) \in h(BC)$  alors  $h(B) \in (AD)$  et h(B) est aligne avec let B donc

(1)

h(B)=J

3) on a :Ke(BC)
$$\cap$$
 (IK)  $\Rightarrow$   $h(K)$ e(AD)  $\cap$  (IK) donc h(K)=L

Or toute homothetie conserve les mileux alors L milieu de [AJ]

### **EXERCICE3**

1)a) pour n=0 
$$\Rightarrow$$
 (0,U<sub>0</sub>) $\Rightarrow$  u<sub>0</sub>=1

n=4donc  $(4,u_4)$  alors  $u_4=2$ 

b) 
$$u_4 = u_0 + 4r \text{ d'où } 2 = 1 + 4r \text{ alors } r = \frac{1}{4}$$

2)
$$u_n = u_0 + nr$$
 en remplacant alors  $u_n = 1 + \frac{1}{4}n$ 

3)d'apres (1) on a : 
$$u_{30}$$
=8,5

4)1+
$$\frac{1}{4}$$
n = 74 donc n = 292