Š^&^^ÁÒ|ÁP^åãÁÓ^} ÁP•ā, ÁR^} å[`àæ Ö^ç[ālÁå^Á&[}d[|^ÁÞ»H

Exercice 1:(4 points) Cocher les bonnes réponses

- 1) un=2n+1 :
- a) Un est une suite arithmetique b)Un est une suite geometrique c) Un : ni arithmetique ni geometrique
- 2)soit $f(x) = x^3 4x^2 + |x| 1$, $x \in IR$. f est une fonction
- a)polynôme b) rationnelle c)ni polynôme ni rationnelle
- 3)soit $f(x) = 2x^3 3x^2 8x + 12$, une racine de f est:
- a)2 b)-2 c)1
- 4)soit $f(x) = \frac{2x+3}{2x^2+8}$, f a pour domaine de définition :
- a)IR\{-2,2} b)IR\{-2} c)IR

Exercice 2:(8 points)

- Soit les fonctions f et g définies par $f(x) = x^3 13x + 12$ et $g(x) = x^2 5x + 4$
- 1) Déterminer les domaines de définitions de f et g
- 2)Montrer que 1 est une racine de f puis factoriser f
- 3)Résoudre g(x) = 0
- 4)soit h(x) = f(x) g(x) et $k(x) = \frac{f(x)}{g(x)}$
- a)Déterminer le domaine de définition de h et montrer que $h(x) = (x-1)(x^2-8)$
- b)Déterminer le domaine de définition de k puis simplifier k(x)
- c)Résoudre f(x) < g(x)
- d)Résoudre $k(x) \ge 0$

Exercice 3:(8 points)

- Soit ABCD un parallélogramme et E le point tel que ACED soit un parallélogramme
- 1)Déterminer les images de A , D et (AB) par la translation de vecteur \overrightarrow{AC}
- 2)Construire les points B' et E' images respectives de B et E par la translation de vecteur \overrightarrow{AC}
- 3) Soit I le milieu de [AC] ,la droite (EI) coupe (DC) en M ,soit M' l'image de M par la translation de vecteur \overrightarrow{AC}

Montrer que M' est le centre de gravité de B'EE'

CORRECTION(Proposee par Guesmi.B)

EXERCICE1

1)a

2)a

3)a

4)c

EXERCICE2

1)f et g sont deux fonctions polynomes donc elles sont fefinies sur IR

2)f(1)=1-13+12=0 donc 1 est une solution de f(x)=0

Donc $f(x)=(x-1)(ax^2+bx+c)$ en developpant et par identification on aura a=1;b=1 et c=-12

Donc $f(x)=(x-1)(x^2+x-12)$

3)a+b+c=0 donc x=1 ou x=c/a=4

Donc $S_{IR}=\{1,4\}$

4)a) h(x) est une fonction polynome donc elle est definie sir IR

$$H(x)=(x-1)(x^2+x-12)-(x-1)(x-4)=(x-1)(x^2-8)$$

b)k(x)=
$$\frac{(x-1)(x^2+x-12)}{(x-1)(x-4)} = \frac{x^2+x-12}{x-4}$$

c) $f(x) < g(x) \Leftrightarrow f(x) - g(x) < 0 \Leftrightarrow h(x) < 0$

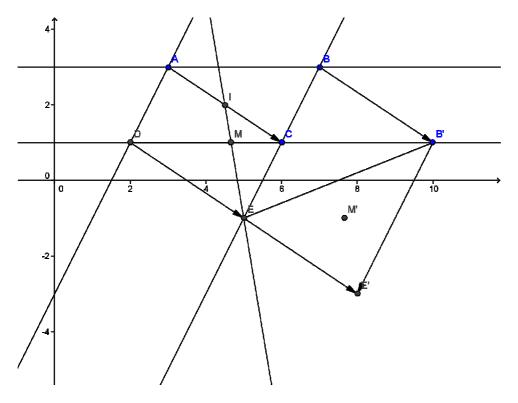
Х	_ —∞	$-2\sqrt{2}$		1		$2\sqrt{2}$	+∞
x-1	-		-	þ	+		+
$\overline{x^2-8}$	+	0	-		-	0	+
h(x)	-	0	+	0	-	ø	+
	l						

$$\Leftrightarrow$$
 $S_{IR}=]-\infty,-2\sqrt{2}[\cup]1,2\sqrt{2}[$

 $d)k(x)>0 \Leftrightarrow$

Х	_∞	4	1	3	1 +∞
x-4	-	-	-	-	0 +
x ² +x-12	+	-	-	0 +	+
k(x)	-	0 +	+	О -	+
S_{IR} =]-4,1[U]1,3	[∪]4,+∞[II		

EXERCICE3



1)ACED parallelogramme sig $\overrightarrow{AC} = \overrightarrow{DE} \ donc \ t_{\overrightarrow{AC}}(D) = E \ et \ \overrightarrow{AC} = \overrightarrow{AC}$ $\Leftrightarrow t_{\overrightarrow{AC}}(A) = C$

L'image d'une droite par une translation est une droite de meme direction

Donc l'image de (AB) est la droite passant par $t_{\overrightarrow{AC}}(A)=C$ et parallele à (AB) qui n'est que (CD)

Donc $t_{\overrightarrow{AC}}(AB) = (CD)$

3) on a
$$t_{\overrightarrow{AC}}(E) = E'$$
; $t_{\overrightarrow{AC}}(B) = B'et t_{\overrightarrow{AC}}(D) = E$

I le milieu de [AC] donc I est le milieu de [BD] car ABCD est un parallelogramme

C est le milieu de [EB] car $\overrightarrow{EC} = \overrightarrow{CB}$

 $(EI) \cap (CD) = \{M\} \ donc \ M \ est \ le \ centre \ de \ gravite \ du \ triangle \ EBD$

Son image est le centre de gravite du triangle image

Donc M' est le centre de gravite du triangle EE'B'