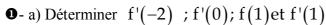
Niveau : 3^{éme} Sciences Durée : 2 heures

Exercice n°1(4,5 points)

Le plan est muni d'un repère orthonormé (O, \vec{i}, \vec{j})

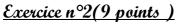
On a représenté ci-contre la courbe représentative (C) d'une fonction f définie sur \mathbb{R}



b) Déterminer l'équation du tangente T à C en 1

c) Calculer
$$\lim_{x\to 1} 2\left(\frac{f(x)-1}{x-1}\right)$$

2-Déterminer le réel \mathbf{x}_0 où \mathbf{f} n'est pas dérivable . Justifier la réponse .



I] Soit f la fonction définie par $f(x) = \frac{x^2 + 8x + 7}{x - 1}$

et C_f sa courbe représentative dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$

 $lackbox{0}$ -a) Calculer $\lim_{x \to 1^-} f(x)$ et $\lim_{x \to 1^+} f(x)$. Interpréter le résultat .

b) Calculer
$$\lim_{x \to -\infty} f(x)$$
 et $\lim_{x \to +\infty} f(x)$

2-a) Vérifier que pour tout $x \in \mathbb{R} \setminus \{1\}$: $f(x) = x + 9 + \frac{16}{x - 1}$

b) En déduire que la droite $\Delta : y = x + 9$ est un asymptote oblique à C_f au voisinage de $+\infty$ et $-\infty$

3- a) Déterminer D l'ensemble où f est dérivable et que pour tout $x \in D$ on a $f'(x) = \frac{x^2 - 2x - 15}{(x-1)^2}$.

b) Dresser le tableau de variation de f

\bullet-Calculer f(-1) et f(-7) puis déduire le signe de f.

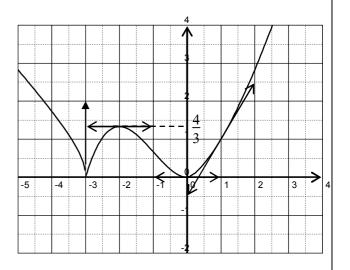
II] Soit g la fonction définie sur \mathbb{R} par $g(x) = \begin{cases} \frac{x^2 + 8x + 7}{x - 1} & \text{; si } x \le 0 \\ x\sqrt{2x + 3} - 7 & \text{; si } x > 0 \end{cases}$

• a)Etudier la dérivabilité de g à droite et à gauche en 0 b)Interpréter le résultat géométriquement .

2-a) Montrer que g est dérivable sur $]-\infty,0[$ et $]0,+\infty[$

b) Montrer que pour tout $x \in]0, +\infty[$, $g'(x) = \frac{3x+3}{\sqrt{2x+3}}$

3- Soit $a \in]0,+\infty[$, déterminer le point A de C_h d'abscisse a où la tangente à C_h en A est parallèle à la droite D: y = 4x - 1



Exercice n°3(6,5 points)

- $\bullet \text{-Soit } f(x) = \sin 2x \frac{\sqrt{3}}{2}$
 - a) Calculer $f\left(\frac{\pi}{6}\right)$; $f\left(\frac{\pi}{4}\right)$ et $f\left(x+k\pi\right)$ pour tout $x \in \mathbb{R}$, $k \in \mathbb{Z}$.
- $\textbf{2} \operatorname{Soit} g(x) = \sin x \sqrt{3} \cos x$
 - a) Calculer g(0) et $g\left(\frac{\pi}{2}\right)$
 - b) Montrer que $g(x) = 2\cos\left(x \frac{5\pi}{6}\right)$
 - c) Résoudre dans \mathbb{R} , l'équation g(x) = 0
- Soit $h(x) = \frac{f(x)}{g(x)}$, Déterminer D_f l'ensemble de définition de f.
 - a) Montrer que pour tout $x \in D_f$: $h(x) = -\sin(x \frac{\pi}{6})$
 - b) Résoudre dans \mathbb{R} puis dans $]-\pi,\pi]$, l'équation $h(x)=\frac{1}{2}$

©-Bon travail-©

CORRECTION(proposee par Guesmi.B)

EXERCICE1

1)a) f'(-2)=0 (tangente horizentale)

De meme f'(0)=0

La tangente au point d'abscisse 1 passe par A(1,1) et B(0,-1/2)

Donc
$$f'(1) = \frac{1 - (-\frac{1}{2})}{1 - 0} = \frac{3}{2}$$

$$f(1)=1$$

b)T :
$$y = f'(1)(x-1)+f(1)$$

donc T :
$$y = \frac{3}{2}x - \frac{1}{2}$$

c)2
$$\lim_{x\to 1} \frac{f(x)-1}{x-1} = 2f'(1) = 3$$

2)au point d'abscisse $x_0=-3$ la tangente à la courbe est verticale

Donc f n'est pas derivable en -3

3)

EXERCICE2

I)1)a)
$$\lim_{x\to 1^-} f(x) = -\infty \ puisque(x-1<0)$$
; $\lim_{x\to 1^+} f(x) = +\infty \ car(x-1>0)$

$$\mathrm{b)lim}_{x \to -\infty} f(x) = -\infty \, et \, \lim_{x \to +\infty} f(x) = +\infty$$

2)a)
$$x+9+\frac{16}{x-1} = \frac{(x+9)(x-1)+16}{x-1} = f(x)$$

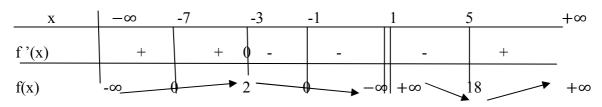
b)
$$\lim_{|x|\to+\infty} f(x) - (x+9) = 0$$
 donc $\Delta: y = x+9$ est une asymptote en ∞

3)a)f est une fonction rationnelle donc elle est derivable sur son ensemble

De definition IR-{-}

Et
$$f'(x) = \frac{(2x+8)(x-1)-(x^2+8x+7)}{(x-1)^2} = \frac{x^2-2x-15}{(x-1)^2}$$

b)le signe de f'(x) est le meme que celui de $x^2 - 2x - 15$; $car(x-1)^2 > 0$, $\forall x \neq 1$ on calcule $\Delta = 64$ on trouve x=-3 ou x=5



$$f(-1)=0$$
 et $f(-7)=0$

donc d'apres le tableau de variation

on a le tableau de signe de f(x)

II)1)a) d'apres I)3)a) g'(0) = -15

Reste a voir $g'_g(0)=\lim_{h\to 0^+}\frac{g(0+h)-g(0)}{h}=\sqrt{3}\neq -15$ donc g n'est pas derivable en 0

b)g est derivable à droite et à gauche en 0 mais n'est pas derivable en 0

donc le point B(0,-7) est un point anguleux

2)a)d'apres 1)a)

b)pour x>0 on a : g'(x)=
$$\sqrt{2x+3} + \frac{2x}{2\sqrt{2x+3}} = \frac{3(x+1)}{\sqrt{2x+3}}$$

3)
$$g'(a)=4$$
 et a>0 puis a> -3/2

On trouve l'equation 19a²-14a-39=0

Donc
$$a=-\frac{13}{18}<-\frac{3}{2}$$
 ne convient pas ou $a=\frac{32}{9}>-\frac{3}{2}$ convient

EXERCICE3

1)
$$f(\frac{\pi}{2}) = 0$$
 et $f(\frac{\pi}{4}) = 1 - \frac{\sqrt{3}}{2}$; $f(x + k\pi) = f(x)$

2)a)g(0)=
$$-\sqrt{3}$$
, $g(\frac{\pi}{2})=1$

b)
$$a = -\sqrt{3}$$
, $b = 1$ et $r = \sqrt{a^2 + b^2} = 2$, $\cos \varphi = \frac{a}{r} = \frac{-\sqrt{3}}{2}$ et $\sin \varphi = \frac{b}{r} = \frac{1}{2}$ donc $\varphi = \frac{5\pi}{6}$

alors
$$g(x) = 2\cos\left(x - \frac{5\pi}{6}\right)$$

c)g(x)=0
$$\Leftrightarrow$$
x $-\frac{5\pi}{6} = \frac{\pi}{2} + k\pi$; $k \in IZ \ donc \ x = \frac{3\pi}{2} + k\pi$

3)a) d'apres 1)b et 2)b on a
$$h(x) = \sin(\frac{\pi}{6} - x) = -\sin(x - \frac{\pi}{6})$$

3)b) on a :
$$\sin\left(\frac{\pi}{6} - x\right) = \sin\left(\frac{\pi}{6}\right) \Leftrightarrow \frac{\pi}{6} - x = \frac{\pi}{6} + 2k\pi \text{ ou } \frac{\pi}{6} - x = \pi - \frac{\pi}{6} + 2k\pi$$

Donc
$$x = 2k\pi$$
 ou $x = \frac{-2\pi}{3} + 2k\pi$, $k \in IZ$

Dans
$$]-\pi,\pi] \ on \ a: x = \frac{-2\pi}{3}$$